CS 370 Operating Systems

Homework 2: Comparing Scheduling Algorithms
The purpose of this homework is to build a scheduler to compare performance of a First In First Out (FIFO) versus Shortest Job First (SJF) algorithms. The algorithms will be tested assuming a single processor and multi-processor configurations of 2-4 processors. You can use Java or another programming language (with threads) using producer/consumer logic to emulate an actual O.S. implementation.
Start Code: Producer/Consumer
The idea behind the homework is that an operating system receives jobs to process. We will use Producer/Consumer code to execute the logic: Producers generate jobs and Consumers are processors which process the jobs. You may obtain starting code from the directory: /home/student/Classes/Cs370/BoundedBuffer. This code includes various classes:
· Factory: This class generates all the Producers and Consumers.

· Producer: This is the application that generates Jobs.

· Consumer: This is the processor which processes Jobs.

· BoundedBuffer: This is the FIFO queue where Producers issue jobs to Consumer Processors.

· Job: This class you must create to contain the information about each job.

· SleepUtilities: This is where you can generate the random interarrival and service times, and sleep() for the necessary duration.

The Consumer/Scheduler class shall contain a buffer of Jobs, protected with producer/consumer logic. A Job object can track each job request. The Job must track the required processing time, the job class, and the time the job was requested.
Step 1: Develop a Single-Processor Simulation
A Producer thread generates jobs from an application program (or jobs that request time from the O.S.) A Producer simulates a 'think time', when the user is busy preparing their next terminal input or the program is waiting completion for an I/O; and a Service time, which is the duration that the program expects to be executed. This corresponds to the Blocked (on I/O) and Running states, respectively.

The above can be re-stated as follows: Jobs arrive to be processed every N time units. Each job which is requested has a service or processing time of M time units. We simulate this with two Producer threads, which each generate a number of application jobs by generating requests every N time units. Each job Producer Sleep()s for an interval of time (according to their defined interarrival time) then issues a job to the Scheduler to be queued and processed. Each ‘job’ lists its defined service time. We will use a producer/consumer buffer and logic to ensure that the scheduler's buffer of ‘jobs’ never overflows. The buffer can be a list data structure.
Initial Simulation Configuration
There are 2 job classes. One Producer will generate I/O bound jobs, and the second Producer will generate the CPU bound jobs:

· Job Class 1: Short I/O bound jobs which arrive every 10 units and require 5 units processing (or service) time.
· Job Class 2: CPU bound jobs which arrive every 100 units and require 50 units processing time.

A 'Scheduler' (consumer thread) processes all job requests according to the selected scheduling algorithm: FIFO and SJF. (Get FIFO working, then enhance your code to run SJF also.) The Scheduler alternates between selecting a waiting job from the scheduler buffer(s) according to the selected scheduler algorithm, and Sleep()ing for the duration of the processing or ‘service’ time. The time that a job spends sitting in the Scheduler's buffer is the time the job spends sitting in the Ready state/queue, and counts as the ‘Wait’ Time. In a multiprocessor configuration, multiple consumers will run simultaneously.

Report Statistics on Jobs and Processors

To compare effectiveness of different algorithms, we will need to gather statistics on a per job-class basis. Modify your program to collect the following statistics (so they can be collected for both algorithms):

· average service time per job class: time the server will actually process the job,
· maximum service time per job class,

· average turnaround (or response) time per job class: end_time – creation_time,
· maximum turnaround (or response) time per job class,
· average wait time per job class: turnaround_time – service_time,
· maximum wait time per job class,
· processor (or CPU) utilization = total consumer busy time / total time,
· processor throughput (jobs/time) = total # of jobs / total time.
Note that the service time measures the average time jobs are in the Running state, and the wait time is the average time that a job waits in the Ready state/queue. The processor utilization is the % of time the processor(s) are busy, while the throughput is the number of jobs processed over the total run time. The processor utilization is also equal to service_time/interarrival_time, summed for all applications.
When you print statistics, generate service time, turnaround time and wait time for each job class (e.g., I/O-bound or CPU-bound). Processor utilization is normally generated per processor.

Print Debug Info
Debug your program to the best of your ability. It is helpful to have an optional print() utility that prints all buffer entries, for debug purposes. Also, please print information about each request and service to verify that the program is executing correctly. This will allow manual checking of the simulation by both you and me. I recommend printing short statements (or writing to a file) to see when jobs are produced and serviced. This can include statements such as Created Job Class 1 job 25 at time 34335, abbreviated as:

Created JC1:25 34335

Processed JC1:25 34669

Created JC1:26 34779

You may also want to print the buffer after each request and service to ensure that the entries are handled properly. Even this minimal debugging information should be commented out to attain more reliable statistics.

Step 2: Do Manual Calculations to Determine Expected Statistics:

You should do an analysis to determine how the jobs should run. In the figure below, we see an example time line of how a single processor would process jobs, if only job class one were introduced to the processor. You want to draw diagrams to show how processing could occur with both producer applications and a single consumer processor. Include this diagram in the results section of your paper.

[image: image1]Prepare a timeline and manually calculate a value for processor utilization, throughput, average turnaround time, and average wait time for each job class for 100 time units (assuming non-random times.) Do two timelines for FIFO: One assuming 1 processor; the second assuming 2 processors. Do one timeline for SJF, assuming 1 processor. Include the manually-drawn diagrams in your appendix and discuss them in the Analysis section of your paper. One interesting statistic you can calculate is:
offered rate = service_time/inter-arrival_time .

This statistic provides you the expected load, which is equivalent to the processor utilization. If your processor utilization exceeds the number of processors, then jobs will end up queuing and the queue will get longer and longer.
Step 3: Fix Problems in Your Program

Now that you know what statistics your program SHOULD produce, we need to get your program to produce these statistics (to a fairly high degree of accuracy). Generally there are two types of errors that you must guard against (but of course other types of errors can also occur):
· The OS timing is not precise enough to run simulations. This can be minimized by multiplying your Sleep time by a given factor in order to obtain accuracy. If a job is to sleep for n units, call Sleep(n*100) or Sleep(n*1000); Do this for both producer and consumer sleeping. The larger the multiple is, the more accurate your result will be – but the longer the simulation will run.
· When your generated output is lengthy, the output tends to delay the simulation and throw off statistics. Keep your output to a short and concise minimum.
· When you have sufficient results and you want to stop your program, you will need to coordinate all your threads to print statistics. There are multiple ways to do this, but one way is to interrupt all the threads using the following interrupt() capability at the group level (causing exceptions for each thread):

Thread.currentThread ().getThreadGroup ().interrupt();

For debug purposes, run the simulation for 200 units (or two full iterations). When you have your manually calculated results matching your programmed results, print out a copy of the output for the two suggested simulations: 1) with 1 processor; and 2) with 2 processors, for both scheduling algorithms: FIFO and SJF. Include the generated output as an appendix to your paper. Generate your report statistics using a much longer run.
Step 4: Use Random Data instead of Fixed Data

Once you have debugged your logic, perform simulations for random type simulations. Usually an ‘exponential distribution’ is used for the inter-arrival and service times. Use a random-number generator to generate each interarrival time and service time using the following Java equation:

 time = avgTime * -Math.log(Math.random());

Run this simulation for 10000 units, at least. If your average service time is not where it should be, probably the simulation is not running for long enough. With enough time, your average should be very close to the expected average service time, but the maximum service time may be quite different due to randomness. Your average turnaround time and wait times should be close to the manually calculated, but will be slightly larger. Why?
Once you have the program running correctly for both algorithms, print out a copy of your program(s) and include it as an appendix to your paper.
Now you can run the actual simulations that will be used to compare the algorithms. Include the generated program statistics in the appendix of your paper, labeled properly as to which test was run. (Only the last page of Arriving/Departing job output is necessary if your statistics are close!) Also include the statistics in a table in the Results section of your paper, showing both your manually-calculated (if available) and program-generated results, for each simulation. Run the following simulations for both algorithms: FIFO and SJF.
· 1 Processor: I/O Bound inter-arrival time=10, service=5; CPU bound inter-arrival=100, service=50
· 2 Processors: I/O Bound inter-arrival time=10, service=5; CPU bound inter-arrival=100, service=50
· 4 Processors: I/O Bound inter-arrival time=3, service=5; CPU bound inter-arrival=30, service=50
What results do you see and why?
Step 5: Perform Analysis and Complete Write-up
The analysis section of your lab report should focus on two major sections:

Accuracy of Simulation: Did the manually-generated statistics match the program-generated results? How far off was it and why? Was the producer/consumer logic effective in simulating this logic? How did the simulation estimates perform using random versus non-random times?

The producer/consumer logic will tend to slow down each producer's job requests when the processor is very busy, which is realistic since requests may be received more sporadically when response time is poor. (Why will the producer/consumer logic work this way?)

Comparison of Scheduling Algorithms: Compare how the two scheduling algorithms performed: FIFO and Shortest Job First, on one, two, and four processors. Did the scheduler favor I/O bound or CPU bound jobs? Why? Was there any starvation? Which algorithm would you recommend?
You can also try to answer the questions posed in above sections as part of your analysis.
The write-up should be done in Lab Report format. Be sure to include the following in your report:

· Three manually drawn time sequence of the 2 algorithms, as described above.
· Output showing how jobs are processed for each algorithm - for two complete cycles for non-random data. It should match your manually-drawn time scheme.

· Manually calculated statistics and hopefully closely matching program-generated statistics. (Small errors are ok. Generous errors mean program defects.)
· Code for both algorithms including the code to generate random arrivals and service times (non-random programs are not necessary).
· For each random data test, the last page of output showing the output statistics generated.

· A table in your Results section showing results for each test, including manual, when available. (Only three tests must have manual results.)
· An analysis that answers the main questions listed above.
References:
For additional information see the Operating Systems text:

· Producer/Consumer logic as discussed Synchronization Chapter.

· FCFS & Priority & Round Robin algorithms in Scheduling Chapter.

My web pages on CPU Scheduling and their statistics.

Note: This simulation would best be performed using a simulation language. Because Sleep() is sometimes inaccurate, our simulation will be close but not precise. A simulation language implementation would give much more accurate results. However the purpose of this class is to learn about semaphores, producer / consumer problems and CPU scheduling, and this homework accomplishes that.
0	5	10	15	20	25	30	35	40	45	

