Java Threads
A class can have a thread associated with it (called an active class). To create an active class the class must be declared as follows:

public class MyClass implements Runnable { … }

Threads use the java.lang package which is automatically available. Thus no explicit imports are required.

The thread can be created when the object is created. The thread is created when the parent calls the start() function. Assume there is AnotherClass which creates a MyClass object and starts its thread:

class AnotherClass {

public static void main (String args[]) {

MyClass myObject = new MyClass();

myObject.start();

}

}

The myObject child thread will automatically execute its run() method as a result of the parent executing the start() function. Note that it is possible to create multiple threads for an object, by using this syntax in loop after creating myObject:

Thread childthd = new Thread (myObject);

Thread.start(childthd);

It is possible for MyClass to create its own thread at a time other than when myObject is created. The thread can be created when any MyClass function (e.g. createThread()) is called by another object. The ‘this’ syntax below indicates that the thread is created for THIS object.

public void createThread() {

Thread myThread = new Thread (this);

myThread.start();

myThread.join();
// wait for this thread to complete

}

The start() function will cause the new child thread to execute the MyClass function run(). Run should be declared within MyClass as:

public void run();

The MyClass::run() function should contain the logic that the thread is expected to execute.

A runnable object may be called a ‘task’, since its function is to operate asynchronously from its invoker. Thus, tasks are allocated for the threads to perform, and the main function of these threads is to perform these ‘tasks’.

It is also possible to assign names and get names and system IDs from threads. The parent can assign a name during the creation of the thread:

Thread child = new Thread(this,”Alex”);

The child thread can get information about itself:

Thread thr = Thread.currentThread();

System.out.println("Hi From: " + thr.getId() + "=" + thr.getName());

It was possible to pause, resume and terminate a thread using the following calls, which are now deprecated:

myThread.suspend();
// pauses a thread until a resume occurs

myThread.resume();
// allows a thread to finish what it was doing before a suspend

myThread.stop();
// terminates a thread

However it is recommended instead to set a flag to request that another thread yield() or wait(). (Details to come in future lectures.)

A better way to terminate a thread is for the thread to return from its run() function.
Other methods include:

long getId();

// Get thread id

String getName();
// Returns a string associated with the thread

int getPriority();

// Returns a priority for the thread

void join();

// Wait for thread to terminate

boolean isAlive()

// Indicates whether a thread has returned from run() (or exited)

void yield();

// Thread gives up control to other waiting threads

void interrupt();

// Interrupts a thread
It is also possible to create a subclass from the Java Thread class. The advantage to using the runnable logic above is because it allows MyClass to inherit from another class other than the Java Thread class.

Time & Sleep
It is possible for a thread to sleep for a specified number of milliseconds (where 1 second = 1000 ms). Below a thread is told to sleep for 1 second within its run() method:

public void run() {

try {

Thread.sleep(1000);

} catch (Interrupted Exception ex) { ex.printstackTrace(); }

…

}

The thread will execute the instruction following the sleep at least after one second. (Timing is not entirely precise depending upon interrupts in the system and your program’s priority.) Here Thread refers to myThread, since we are in myThread::run(). It is also possible to use: myThread.sleep(1000);

It is possible to get the current time, using:

long startTime = System.currentTimeMillis();

… thing to time ….

long endTime = System.currentTimeMillis();

System.out.println(“Time is “ + (endTime – startTime) + “ milliseconds”);

Concurrency

To learn about how many processors are being used, and which processor is being used, the following calls are available:

import java.util.concurrent.*;

System.out.println(“The number of processors is “ +

 Runtime.getRuntime().availableProcessors());

Thread Group
Linux creates threads in a thread group. When you request a new thread, a new thread group of a set of threads is created. For each thread you create, a thread from the thread group is allocated to you.
Java thread groups may contain not only threads, but other thread groups (or subgroups). Thus, thread groups can be allocated in a tree-like structure. Thread groups can be created and destroyed simply.
A threat group enables you to send messages to all threads simultaneously, such as an interrupt. The parent or another child can notify all threads in the thread group of an interrupt using:

Thread.currentThread ().getThreadGroup ().interrupt ();
This will cause all children in a thread group to receive interrupts. Threads waiting on a sleep(), acquire(), barrier or other calls will return with an exception.

However, you may explicitly create a number of threads (here 2) in a thread pool using the Executor class.

ExecutorService executor = Executors.newFixedThreadPool(2);

executor.execute(new ProducerTask(arg,arg)); // Creates a Producer with args & run()s it

executor.execute(new ConsumerTask(arg,arg)); //Creates a Consumer with args & run()s it

executor.shutdown();

//Waits for an orderly completion of tasks

Other executor methods include:

List<Runnable> shutdownNow();
// Shut down thread group immediately

boolean isShutdown();

// Returns true if executor is shut down

boolean isTerminated();

// Returns true if all tasks have been shut down

Synchronization
We will go over this advanced section when we get to Synchronization. This section only discusses the syntax of Java monitors.

The ‘synchronized’ keyword is used to specify that a number of functions for a class object should be implemented as critical sections, and that only one of these methods may be executed at a time, and then only by one thread. To define a function as within a critical section specify:

class MyClass {

public synchronized void myFunction1(Parm1 parm1) {…}

public synchronized void myFunction2(Parm1 parm2) {…}

}

Above the keyword ‘synchronized’ ensures that at most one thread can be in either myFunction1 or myFunction2. Thus both functions are considered mutually exclusive or critical sections, which are implemented via a lock on the object.

An alternate way of performing this synchronization is within a function, using the following logic:

Type method(…) {

synchronized (this) {

// critical section code

} // release object lock

}
Locks

Alternatively, there is also a lock() method that can be used that does the same thing as ‘synchronized’:

import java.util.concurrent.locks.*;

…

public void method1() {

// create a lock

private static Lock lock = new ReentrantLock();

lock.lock() // acquire lock

// critical section code

lock.unlock() // release lock

}

Blocking Queues
There are three blocking queues: ArrayBlockingQueue<E>, LinkedBlockingQueue<E>, PriorityBlockingQueue<E>.

import java.util.concurrent.*;

private static ArrayBlockingQueue<Job> buffer = new ArrayBlockingQueue<>(2);

public static void main(String[] args) {

ExecutorService executor = Executors.newFixedThreadPool(2);

executor.execute(new ProducerTask());

executor.execute(new ConsumerTask());

executor.shutdown();

}

private static class ProducerTask implements Runnable {

public void run() {

 try {

while (true) {

buffer.put(job);

}

 } catch (InterruptedException ex) {

ex.printStackTrace();

}

private static class ConsumerTask implements Runnable {

public void run() {

 try {

while (true) {

job = buffer.take();

}

 } catch (InterruptedException ex) {

ex.printStackTrace();

 }

}

