PAGE
2
Deadlock

Deadlock
Operating Systems CS 370
Text:

Chapter 7
Operating Systems Concepts with Java, Eighth Ed., Silberschatz, Galvin, Gagne

Objectives:

During this class the student shall learn to:

· Define Deadlock.

· Draw a Resource Allocation Graph from Set notation, and determine if deadlock exists by performing deadlock reduction.
· Determine whether deadlock exists when multiple resources exist.

· Determine how to avoid deadlock using Resource Allocation Graph with claim edges.

· Define the four conditions for deadlock, and a solution for each condition that prevents deadlock.

Time Allocation:

Class time will be allocated as follows:

Intro and Graphs

1 hour

Deadlock Prevention

1 hour

In-class Lab

½ hour

TOTAL:

2.5 hours

Concurrency: Deadlock

Deadlock

A process is waiting for resources held by processes waiting for resources. The resources will never free up because they are held by processes waiting for resources.

Example 1:

Law passed by the Kansas legislature early 1900s: "When two trains approach each other at a crossing, both shall come to a full stop and neither shall start up again until the other has gone." Applied Operating Systems Concepts
Example 2:

Process 1

Process 2

while (forever)

while (forever)

request(tape)

request(archive_file)

request(archive_file)

request(tape)

work

work

release(tape)

release(archive_file)

release(archive_file)

release(tape)

enddo

enddo

Resources in a computer:

· physical: printers, tape drives, memory, CPU cycles...

· logical: files, semaphores, monitors, databases...

A process may use a resource as follows:

1. Request resource. If resource is busy, the process must wait until it is free.

2. Use: Use the resource.

3. Release: Release the resource

Examples:

· request / release device

· open / close file

· allocate / free memory

A deadlock situation arises if:

1. Mutual exclusion: at least one resource held in a non-sharable mode, and another process requests that resource.

2. Hold and wait: One process holds at least one resource and is waiting to acquire additional resources held by other processes.

3. No preemption: A resource can be released only voluntarily by the process holding it, when process is done.

4. Circular wait:

· P0 is waiting for a resource held by P?,

· which is waiting for a resource held by ...,.

· which is waiting for a resource held by P0.

Recognizing Deadlocks

Problem: Program in deadlock cannot determine if deadlock exists since it is blocked.

Resource Allocation Graph

· Process is shown as circle.

· Resource is shown as rectangle (with one or more dots inside).

· Multiple resource instances are shown as multiple dots within a rectangle.

· Edge: Arrow: Shows resource ownership or request

· Process -> Resource // Process is waiting for Resource: Request Edge
· Resource -> Process // Process is holding a Resource: Assignment Edge
If each resource has one instance: deadlock is detected if a cycle exists in a graph.

P1----------->R1

P1 holds R2

^

|

P1 wants R1

|

|

P2 holds R1

|

V

P2 wants R2

<-<-------------P2

Graph Notation for above Table:

P = {P1, P2}

R = {R1, R2}

E = {R2(P1, R1(P2, P1(R1, P2(R2}

Draw a Resource Allocation Graph for the following scenario:

	Process
	Holds
	Wants

	P1
	A
	B,C

	P2
	D
	A

	P3
	B
	E

	P4
	E, C
	D

Write Graph Notation for above Table:

A Wait-For Graph shows Processes only

· Remove Resource blocks

· Have Processes point to processes directly.

Draw a Wait-For graph

If a resource has multiple instances: deadlock may exist if cycle exists in a graph.

· More complex if multiple units of a resource exist: E.g. Memory.

· To solve use Graph Reduction

· Consider transitions that could clear edges from graph.

· Assume optimal actions performed

Draw Resource Allocation Graph again, considering that there is one resource of each type, except that there are two resources of:

· Type A.

· Type B.

Use Graph Reduction to determine whether cycle exists, or how it can be cleared.
Graph Reduction

Assume a graph G.

If process p is not blocked in G, remove all arrows to resources from p to yield G’.
A graph is irreducible if there are no more reductions possible:

G (G’ (G” (… (G*

Where G’, G”, … are reduced versions of G, and G* is the irreducible version.

Lemma. For a given graph G, any sequence of reductions yields the same irreducible graph.

Deadlock Theorem. Let G be a resource state graph, and let G* be the graph obtained from G by a sequence of reductions, such that G* is irreducible. Then G is a deadlock state if and only if G* has some blocked processes. Moreover, the processes blocked in G* are exactly the processes deadlocked in G.

Corollary: If G is a deadlock state, then G has at least two processes deadlocked in G.
Methods for Handling Deadlocks

PAID:

1. Prevention

2. Avoidance

3. Ignorance

4. Detection & Recovery
Ignorance

‘Ostrich Algorithm’: Stick your head in the sand and pretend there is no problem at all.

· Justification: Problem does not happen frequently.

· Used by: UNIX, JVM, Windows

· Problem: Once it happens problem does not go away. Lockup exists until reboot or deadlocked process is manually aborted.

· Solution: Let application take care of it via designing deadlock prevention.

Prevention

Prevent one of the four conditions from happening:

· Mutual Exclusion: Avoid this by allowing spooling or sharing.

· E.g. Spool output to printer instead of waiting for printer.

· E.g. Have multiple processes read from same file simultaneously.

· Problem: Not all resources are sharable.

· Hold and Wait: A process may not request a resource if it holds a resource.

· Have processes define all the resources they need at the beginning of requests.

· If resource is not available, do not allocate any resource and wait until all resources are available.

· Alternately: allow a process to request a resource only if it gives up all resources being held first. It may claim the resources back if it succeeds in the request.

· Problem: Resources are held for longer than they are used.

· Problem: Starvation is possible.

· No Preemption: If a process requests a resource it cannot immediately get, it is forced to release all held resources.

· Problem: Don't want to give away a printer or tape drive that has already been written to while waiting for resource.

· Problem: If process re-requests resources before problem is solved.

· Circular Wait: Each process requests resources in an increasing order of enumeration.

· Problem: Resources may be held for a longer time than they are used.

Dining Philosophers Problem

Situation:

· There are 5 philosophers.

· Each philosopher eats for a while and then thinks for a while.

· Each philosopher eats with 2 forks: fork on left and fork on right.

· There is a table with spaghetti with 5 chairs, 5 plates, 5 forks.

Problem: Deadlock

What solutions exist following Prevention solutions?

Detection & Recovery
· Requested resources are granted to processes whenever possible.

· Periodically the O.S. performs an algorithm to detect circular wait conditions, using graph algorithm)

· Check at resource request/not available. Advantage: Incremental checks & early detection

· Check every hour or so. Advantage: less overhead.

· When deadlock detected solutions can be:

· Abort all deadlocked processes.

· Back up deadlocked processes to checkpoint and restart.

· Successively abort deadlocked processes until deadlock no longer exists.

· Successively preempt resources and back up preempted processes.

· Preempt process which (for example):

· Consumed least amount of processor, or least total resources, or incurs least number of rollbacks.
· Has lowest priority.

Problems with preempting:

· May leave data in inconsistent state.

Avoidance:
Resource Allocation Graphs

Claim Edge: Process P may request Resource X sometime in the future.

· Drawn as dotted arrow from process to resource
· Shows multiple requests, can determine which request to allocate to prevent deadlock
For the following Graph:

Edges: { A(P1, P1- ->B, P1- ->C, P2- ->A, P2- ->C, P2- ->D, D(P3, P3- ->C }

Which requests can be allocated?

Java Deadlock Avoidance

Avoid Suspend()/Resume()

· Problem: Thread holds lock(s) while ‘suspended’.

· Solution: Set a suspendFlag for other thread to read – thread suspends itself via semaphore when safe, and other thread signals thread to resume

Avoid Stop(): One thread ‘stop()s’ another thread.

· Problem: Stopped thread will release locks, but may leave data in inconsistent state if stop() occurred in critical section.

· Solution: Set a stopFlag for other thread to read.

Exercise
1) Write segments of a program that illustrates deadlock using semaphores.

2) Draw a resource allocation graph for the following Dining Philosophers scenario:

Philosophers 0 and 2 are eating. Philosophers 1, 3, and 4 are hungry. Philosopher 4 holds his left chopstick. Assuming that philosophers think after they eat, use graph reduction to determine if deadlock can occur.

3) Draw a resource allocation graph for the Dining Philosophers scenario for a deadlock scenario.

4) Consider a system consisting of four resources of the same type that are shared by three processes, each of which needs at most two resources. Using resource allocation graphs, how that the system is deadlock free. (Adapted from “Operating System Concepts with Java”, Silberschatz, Galvin, Gagne.)

R1

R2

P0

R0

R1

R

P2

P3

P1

