PAGE
1
Networks

Network Structures

Operating Systems 370

Text:

Chapters 17-17.5
Operating Systems Concepts with Java, Eighth Edition, Silberschatz, Galvin, Gagne

Objectives:

During this class the student shall learn to:

· Define scalability, fault tolerance, transparency.

· Describe the operation and advantages of local caches in remote file systems.

· Describe the difference between stateful and stateless distributed file systems, and the advantages of each.

Time Allocation:

Class time will be allocated as follows:

File Systems

2 hours
Distributed Systems Issues
1/2 hour

Distributed File Systems
1.5 hours
TOTAL:

4 hours

Distributed Systems

Distributed System:

A collection of loosely coupled processors interconnected by a communication network.

· Users can access remote resources in the same manner as they do local resources.

Network Operating System: Users are aware of multiplicity of machines, and can access remote computers.

Advantages of Distributed Systems:

· Resource Sharing: Share files, database, specialized hardware, software

· Computation Speedup: Distributed computation among various sites to run computation concurrently

· Reliability: When a site fails, remaining sites can continue operating.

· Communication: Allow users to exchange information, via email, messages, web, remote procedure calls, …

Distributed Functions:

· Remote Login: Telnet, SSH

· Remote File Transfer

· Migration: Data, Computation, Process

Migration:

Data Migration: Transfer entire file

Computation Migration: Request a function be performed at another site.

· Can use sockets or remote procedure call (RPC)

Process Migration: Transfer entire process for execution elsewhere. Advantages:

· Load Balancing: Equalize load on each computer

· Computational Speedup: Reduce turnaround time

· Hardware Preference: Specialized hardware preferred

· Software Preference: Access software available at a particular site

· Data Access: Move process to where data exists

Example: WWW provides data migration, computation migration, process migration (java applets)

Design Issues

User Mobility: System behaves identically, regardless of where users logs on.

· Location transparency: Information objects accessed w/o knowledge of their location.

Scalability: Capability of a system to adapt to increased service load

· Scaling transparency: Allows system and applications to expand in scale w/o change to the system structure or application algorithms.

Transparency: The system is perceived as a whole rather than as a collection of independent components.

· Naming transparency: The name of the resource does not indicate where the file, data or process is physically located.

· Bad example: /disk1/prog.c.
· Access transparency: Local and remote information objects accessed using identical operations.

· Example: RPC, Distributed Objects: RMI, CORBA

Fault Tolerance: The system continues to function following a failure (possibly in a degraded mode).

· Failure transparency: users can complete tasks despite hardware or s/w component failure. Concealment of faults.
· Bad Example: Leslie Lamport defined a distributed system as: "one on which I cannot get any work done because some machine I have never heard of has crashed."

A distributed system is modular, increasing scalability and failure transparency.

To increase fault tolerance:

· Do not rely on centralized components: centralized authentication servers, central naming servers, central file servers

· Centralized component failures result in complete failure of application.

· Distributed algorithms are preferred.

Distributed File Systems

Distributed File System: Appears to its clients to be a conventional, centralized file system

Consists of two ends:

· Remote File System: Server: Where file is permanently stored.

· Local System: Client: Where user is logged in.

Design:

Location Transparency: The name of a file does not reveal the file’s location.

Three approaches to Remote File Access:

1) File Transfer: Move entire file to remote site

· May require massive storage at local machine, and longer transmission times.

2) Remote Service (Application Access): Each application read or write translates into a message across the communications link
· May result in many small messages across the network.

3) Local Cache: Local cache allows fewer, larger-packet accesses to the remote file system.

· Balances local memory availability, number of messages transmitted over network

Local Cache: Retain recently accessed disk blocks in a cache, to handle repeated accesses locally.

· Local cache usually in memory, or less often, disk.

· Application interface (often, small chunks) is different from remote file access interface (rarer, large chunks).

· Reads: Cache of (e.g.) 8k block retained locally, for application reads.

· Writes: Write to cache frequently; transmission of writes occur in large chunks less frequently
· Delayed Write policy: Writes are bunched and written with n seconds.

· Write-through policy: Each write sent directly to server: high reliability

· Write-on-close policy: Writes occur when file is closed.

Advantages:

· Reduced network traffic: Few large reads/writes instead of many small ones

· Reduced number of disk reads or writes
· Faster access time: Data is local, not remote

Disadvantages:

· Cache-consistency problem: Inconsistencies between cached copy(s) and master file.

· Requires sufficient memory for cache at local machine

State vs. Stateless File Servers

Stateful File Service: Mechanism:

Remote file system holds intelligence: file access type, next block to read/write to.

· Client opens file: Server fetches information about file, including file identifier.

· Identifier is used for subsequent accesses to Remote File System

· Remote File System retains information about session: Access type (Read/Write/Append), next block to read/write to.

Stateless File Service: Mechanism:

Local file system holds intelligence: file access type, next block to read/write to.

· Remote File System retains no info about opened files.

· Local system retains information about file: e.g. next block to read/write to.

· Each message transfer request contains all required access information.

Advantages of Stateful File Services:

· Shorter communications messages: Full file information not required.

· Read-ahead supported for sequential access.

· Supports locks.

Advantages of Stateless File Services:

· Failure recovery: A newly rebooted file system can respond to requests with no difficulty

· No need for explicit open and close operations

· No tables of file information in the remote file system.

Network File System Exercise
Programmers use the following System Interface:

class File {

public Status open(String filename, boolean readAccess);

public char[] read(int bytecount);

public Status write(char[], int bytecount);

public void close();

}

Please write the above 4 routines. Your file software shall use the remote procedure call in order to access the File server. Calls includes the following procedures:

· out:buffer, out:byteCount RPCread(string filename, int byteCount, int seekLocation);

· out:status RPCwrite(string filename, int cache, int bytecount, int seekLocation);

Assume that the implementation is similar to NFS:
· Stateless Server: Each RPC call includes all information to service the request

· Local Cache: A localbuffer is retained in cache and holds 4k bytes

· Delayed Write: Writes are flushed after 2 seconds of no activity.

 Remote reads and writes are performed with full buffers whenever possible

 During the open() the first 4k bytes are read into localbuffer if readAccess

Write the logic for the File functions above, in high-level logic.

The following logic may help:

 write(localBuffer, byteCount)

 {

for (i=0; i<byteCount; i++) {

sendCache[sendinx++] = localBuffer[i];

if (sendinx == 4096) {

status = RPCwrite(filename, sendCache, sendinx, seekLocation);

seekLocation += sendinx;

sendinx = 0;

}

}

return SUCCESS;

 }
PAGE

