PAGE
11
Introduction

Introduction

Operating Systems CS 370

Text:

Chapters 1, 2-2.5 (Optional 2.7)
Operating Systems Concepts with Java, 8th Ed., Silberschatz, Galvin, & Gagne

Objectives:

During this class the student shall learn to:

· Define terms used in Operating Systems:

· Define terms: batch, real-time system, multiprogramming, LAN, MAN, WAN, work station, multiprocessor, asymmetric multiprocessor, symmetric multiprocessor, core, fault tolerant, blade server, cluster, virtual machine, network operating system, shell, timesharing.

· Define and describe: kernel mode, user mode.

· Describe and draw a graph showing the difference between multiprogramming, multiprocessors and a distributed system.

· Describe the different levels and functions of memory used in an OS: primary, secondary, tertiary.
· Define volatile and describe which memory devices are volatile.

· Analyze how an OS initiates and terminates processes using fork().
· Describe the purpose of the System Call Interface
· List example calls from the major OS subsystems.

Time Allocation:
Class time will be allocated as follows:

Course & O.S. Introduction

½ hour

O.S. Vocabulary

1.0 hour

Memory Subsystems

½ hour

System Call Interface

½ hour

Fork Lab & Process Intro

1 hour

TOTAL:

4 hours

Operating Systems

Computer system can be divided into 3 components:

1. hardware (H/W)

2. operating system (O.S.)

3. system and applications programs

Systems Software: Provides a general programming environment for applications: compilers, linkers, network protocols, text editors, debuggers, etc.
Goals:

· convenient to the user

· efficient

Operating System: resource allocator

· CPU time

· memory space

· file storage space

· I/O devices

Concerned with resource sharing and resource isolation

O.S. History

Early Computers
· Late 40s to mid 50s

· Serial Processing: One user had access to the computer at a time.

· Program loaded in by hand or by card reader

· Programmer used LEDs (lights) and toggle switches to look at registers, step through instructions, halt processor, ...

Early Systems
· Bootstrap Program: ROM contains logic to load OS from disk or tape.

· Batch: Jobs are queued or ‘spooled’ waiting to be processed.

Examples of Batch Processing:

JCL: IBM's Job Control Language
UNIX Shell Command File: List of commands are executed from a file
· Shell: Command interpreter processes each command (in file or at command prompt).

· Includes programming language constructs.

Multiprogramming
· Reading in one program, executing another, sending output for a third...

· Why? Computers got faster but I/O did not speed up at same rate.

· I/O operations left processor idle.

· Solution: Run another program while reading in a new program.

· Must expand memory to support multiple jobs.

Features introduced on Monitor-type computer operating systems:

· Multiprogramming: Support >= 3 programs concurrently.
· Memory protection: Application programs cannot alter Monitor private data.

· Timer: Application programs allowed to run for a specified amount of time.

· Interrupts: Gives monitor control over application program.

· Privileged instructions: The monitor only can execute I/O instructions, inhibit interrupt instructions...

· If application attempts to do a privileged instruction, a hardware interrupt occurs and monitor resumes.

· Supervisory or kernel mode: A mode bit determines when all instructions are allowed.
· User mode: An application mode with limited instructions

Time Sharing
· Multiple users share costly computers.

· Features emphasized:

· Response time, resource management & protection

· Multiple processes in memory, multiprogramming.

· Examples: UNIX, Linux

PC: Personal Computer & Work Stations
· Hardware costs decreased: Processor is single integrated circuit

· Computer system dedicated to a single user: Predictable response times

· Initially simplified O.S (MS DOS): lack of security, multitasking functions

Work Station: Has more memory, faster processor, high resolution graphics, networked.

Server:
Networked System

· Multiple processors connect with each other via communications links.

· Local Area Network (LAN): Single 10-1000 Mbps cable connects many computers locally (room/floor/building)
· Metropolitan Area Network (MAN): Network spans buildings, campus, city.

· Wide Area Network (WAN): Links buildings, cities, countries.
· Network includes: specialized servers: disk/file/database, printer, communications

· Client/server: Clients (user machines) request services from servers.

· Advantages:

· Reliability: if one processor fails, another can take over.

· Resource Sharing: Share printer, plotter, disks

· Computational Speedup: Application execution can be spread over multiple processors.

· Communication: E.g. email

· Networked Operating System: A collection of networked computers that share a file system and can send messages between processes.

Parallel Processors / Multiprocessors

· Multiprocessor: Multiple processors share a bus, memory, clock, I/O devices.

Multicore: A chip with multiple processors

· Parallel Processing: Multiple processors used to speed up execution of a single program.

· Advantages:

Reliability: if one processor fails, another can take over.

· Throughput: application execution can be spread over multiple processors

· Economy of Scale: shared resources: storage, peripherals, power.

· Asymmetric Multiprocessing: A master processor gives orders to slaves
· Symmetric Multiprocessing: Multiprocessors are peers; all share OS structures
· Blade Servers: Processor, I/O, Network boards each have own OS and operate independently in the same chassis.
· Cluster: Computer systems networked (via LAN) to provide high availability.
· Fault Tolerant: System continues operation in spite of any single component failure
· Storage Area Network (SAN): Many computer systems attach to a pool of storage
Real-Time Systems

· When processing completes is as important as how correct the processing is.

· Applications: industrial control, robotics, weapons systems, medical imaging, telephony.

Virtual Machine (VM)

· A system supports multiple operating systems simultaneously.

· Each process is only aware of the single operating system it is working with.

· A VM implementation allows each kernel to think they are interfacing to the actual computer hardware

· Actually the VM implementation intercedes in all accesses to hardware

· Each kernel operates in user mode on the base machine
· Each VM has own minidisk or share a disk

· Timer issues occur

· Advantages: Running non-native software; testing operating systems.

Example VM: Java Virtual Machine

· Interpret one bytecode at a time OR

· Just-in-time compiler: converts bytecodes into machine language of host computer OR

· Execute bytecodes natively

Question: What is the difference between multiprogramming, multiprocessing, and distributed systems?

Computer System & OS Structures

A computer system generally has:

· CPU

· Bus: Enables CPU to communicate with:

· Disk Controller & Disk

· Printer Controller & Printer

· Memory Controller & Memory

Operating System components include:

· Process Management

· Main-Memory Management

· File Management

· I/O System Management

· Secondary-Storage Management

· Networking

· Protection System

· Command-Interpreter System

We review each in turn.

Process Management

· A process is approximately a program in execution.

· However processes can spawn child processes in UNIX via a fork() call:

cout << “Ha “ << endl;
// one process

fork();
cout << “He “ << endl;
// two processes

fork();
cout << “Ho “ << endl;
// four processes

OS Functions include:

· Create/Delete user & system processes

· Process synchronization and communication

Memory Management

· But Memory can consist of many different devices.

· Memory Management consists of Main-Memory Management, Secondary-Storage Management and File Management

Introduction to Memory Hierarchy

Why multiple types of memory are necessary:

1. Processor speed is constrained by memory speed to access instructions, data.

2. Faster memory costs more than slower memory.

3. Principle of Locality: Accesses tend to cluster:

· Do loops and functions repeat the same code and data accesses.

· Instructions execute mostly sequentially.

Levels of Memory: Fast->slow includes:

· Registers: Volatile memory
· Cache: Volatile memory
· Primary or Main Memory: Temporary storage for processing
· Secondary Memory: Magnetic Disk / Electronic Disk: Hold large quantities of available data
· Tertiary Memory: Magnetic Tape / Optical Disk: Backup or archival storage
Cheap but fast implementation includes:

· Small amount of very high-speed memory.

· Larger amount of high-speed memory.

· Huge quantities of low-speed memory

Main Memory: Dynamic Random Access Memory (DRAM)
· Volatile storage: Loss of contents upon power loss.

Magnetic Disks

· Nonvolatile storage: Retains memory after loss of power.

· Access: Seek time, Rotational delay, Transfer time.

Main-Memory Management

OS Functions include:

· Process isolation: A program cannot modify another program's data.

· Automatic Allocation / Mgmt: Memory allocated according to memory hierarchy transparent to programmer.

· Modular Programming Support: Program can dynamically allocate / deallocate memory.

· Protection & Access Control: Allow sharing of data when permissions permit (e.g. files).

· Long-term Storage: Storage of info for extended periods.

Virtual memory: Allows programs to address memory from a logical point of view w/o regard to amount of main memory physically available.
· Allows an executing program to have only a portion of program / data in memory.

· Maps a program's virtual addresses into a physical address.

· Accesses and manages data in cache, main memory, disk as necessary.

Secondary Storage Management

OS Functions include:

· Free-space management: Tracks unused portion of disk

· Storage allocation: Tracks allocation of blocks to files

· Disk scheduling: Schedules disk writes and reads

File System Management

Primary operations include:

· Open: Prepares file for reading, writing

· Read

· Write

· Close: Releases locks & system resources

· Seek: Set file pointer to specific location

OS Functions include:

· Creating / Deleting files and directories

· Supporting operations for manipulating files and directories

· Mapping files onto secondary storage

· Backing up files on stable storage media

I/O Management

Goal: Hide details of specific hardware devices from the user.

OS Functions include:

· A memory-management function that performs buffering, caching, and spooling

· A general device-driver interface

· Hardware-specific drivers

Protection System

· Security: Protect one user or group from another’s activities

· Protection of files, memory, CPU, other resources

· Detection of & protection against malicious, unauthorized or incompetent user

Command-Interpreter System

· System Call Interface: Interface between user and operating system.

· Can be part of or external to kernel

· CUI: Command User Interface

· Shell: Unix command line interpreter

· GUI: Graphical User Interface

· Uses desktop, mouse, folders, and icons to execute commands

Networking

· Communications network connects processors in a system

· Uses Communications Protocol to interface with other computer systems

 System Calls

· Provides a controlled interface between an application and the operating system.

· Controlled interface must ensure operating system cannot be corrupted (by verifying all system call parameters)
· Defines the Application Programming Interface (API)

· Transfers control from User mode to Kernel Mode

(From Figure 3.2 of Applied Operating Systems Concepts)

Process control

· End, abort

· Load, execute

· Create process, terminate process

· Get process attributes, set process attributes

· Wait for time

· Wait event, signal event

· Allocate, free memory

File management

· Create / delete file

· Open, close

· Read, write, reposition/seek

· Get / Set file attributes

Device Management

· Request / Release device

· Read, write, reposition

· Get / Set device attributes

· Attach / Detach devices

Information maintenance

· Get / Set time or date

· Get / Set system data

· Get / Set process, file or device attributes

Communications

· Create / Delete communication connection

· Send, receive messages

· Transfer status information

· Attach / Detach remote devices

 Lab on Processes:

Intro:

The purpose of this lab is to analyze how an OS initiates and terminates processes using fork(), and how the OS intersperses output from different processes.

Method:
Enter the following two files and execute in the lab:

Program1.cpp

Program2.cpp
#include <iostream>

#include <iostream>

#include <unistd.h>

#include <unistd.h>

using namespace std;

using namespace std;
int main()

int main()

{

{

cout << “Ha! “ << endl;

cout << “Ha! “;

fork();

fork();

cout << “Ho! ” << endl;

cout << “Ho! “;

fork();

fork();

cout << “He! “ << endl;

cout << “He! “ << endl;

}

}

Compile and run as follows:

$ g++ simplefork.cpp –o simplefork
$./simplefork
Results:

List the output for both programs below.
Analysis:

Why are we seeing what we are seeing? What is the operating system doing?

Conclusion:
What did you learn from this?

Define System Calls

List specific C/C++ or Java function calls that must include a system call.
Process Control

File Manipulation

Device manipulation

Information maintenance

Communications

