PAGE
1
Memory Mgmt.

Memory Management
Operating Systems CS 370
Text:

Chapter 8
Operating Systems Concepts with Java, 8th Ed., Silberschatz, Galvin, Gagne

Objectives:

During this class the student shall learn to:

· Define MMU, swapping, swap space.
· Define internal fragmentation, external fragmentation.

· Define page, frame, associative register.

· Describe the organization of a Translation Look-aside Buffer (TLB).

· Be able to calculate physical addresses from a logical address using paging.

· Describe how segmentation differs from from paging. Also, which results in internal or external fragmentation? What are the advantages of each?
· Describe why and how a frame table is used.
· Describe how a segment table is used.

· Be able to calculate a physical address from a logical address using segmentation.

Time Allocation:

Class time will be allocated as follows:

Intro & Historical methods

1/2 hour

Paging

1 hour

Segmentation

1/2 hour

Linking & Loading

1/2 hour

Lab

½ hour

TOTAL:

3 hours

Memory Management

Hexadecimal Review

Counting in base 16: 1, 2, 3, 4, 5, 6, 7, 8, 9, a, b, c, d, e, f, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 1a, 1b, 1c, 1d, 1e, 1f, 20, 21, 22, ...

decimal
hexadecimal

binary

comment

2

0x02

0010

2

5

0x05

0101

4+1=5

10

0x0a

1010

8+2=10

11

0x0b

1011

8+2+1=11

12

0x0c

1100

8+4=12

13

0x0d

1101

8+4+1=13

14

0x0e

1110

8+4+2=14

15

0x0f

1111

8+4+2+1=15

16

0x10

0001 0000
16

Binary positions: ... 1024, 512, 256, 128, 64, 32, 16, 8, 4, 2, 1

Introduction to Memory Management

Memory Management solves these problems:

· Relocation: Where do we put a program in memory when we multiprogram? How does swapping impact this?

· Protection: How to protect memory for individual or multiple processes and for read or read/write only.

· Sharing: How to allow processes to use same program code and/or data without compromising protection?

· Logical Organization: Do we organize programs: linearly or modularly?

· Physical Organization: What program and data do we maintain on disk versus in memory?
MMU: Memory Management Unit: H/W which:

· Converts from logical to physical addresses.
· Logical address: Address in process
· Physical address: Address in memory
· For example (assumes a simple MMU):

· Assume program is 10k large, with logical addresses 0..10k
· Assume program is loaded into memory at address 8k.
· Logical address 1124 is at physical address 8k + 1124 = 9124.
· The 8k base address is stored in a relocation register which is used to offset all addresses.

· A MMU limit register contains process size, catching invalid logical addresses (e.g. addresses >10k)
· Technique used by MS-DOS 80X86 processors.
Swapping: During a context switch a process may be swapped out of memory to disk, and then another process is swapped from disk into memory.

Backing Store: Fast disk stores each process contiguously.

Time to swap out/in a 1 MB program (includes disk latency & transfer time)

Write process to backing store:
1MB / (5 MB/sec) = 200 msec.

Read process into backing store:
1MB / (5 MB/sec) = 200 msec.

2 x Latency (Rotate disk)

2 x 8 msec = 16 msec.

Total time for swap 416 msec.

Discussion:

· How much does the process size affect the swap time?

· How can we reduce the swap time?

· How much does the swap time affect the context switch time?

Early Memory Management Techniques

Partitioning: Divide memory into partitions.

· O.S. keeps track of which partitions are free.

· A whole process is loaded into one partition.

· Advantages:

· Can load multiple processes into memory, and context switch without swapping.
· Can protect one program from accessing other programs' (or O.S.) program and data.
Option 1: Equal size partitions: Memory is divided into equal size partitions.

· Advantage: Easy placement: If a partition is open, load next process in.

· Disadvantages:

· A process may be too big for the partition and thus cannot run.
· Internal fragmentation: Every process may not require the total memory allocated to a partition, and thus allocated memory is wasted.
Option 2: Unequal size partitions: Memory is divided into different size partitions.

· Assign a process to the smallest partition which it will fit in.

· Advantage:

· Larger programs can be run.
· Disadvantages:

· Number of active programs determined at time of system generation.
· Internal fragmentation: Small jobs do not use partition space efficiently.
Option 3: Dynamic Partitioning: Allocate a partition from memory as needed and available for each program.

· The O.S. keeps track of all holes in memory.

· A process is allocated exactly as much memory as it requires and no more.

· A process that is swapped out leaves a hole where a new process can be swapped in.

· If a swapped in process does not use the entire hole, the remaining hole may be filled with another process.

· Disadvantages:

· External fragmentation: This method leads to many small unusable (unallocatable) holes in memory: 1/3 memory
· Algorithms to fill holes:

1. First-fit: Allocate the first hole that is big enough.

2. Best-fit: Allocate the smallest hole that is big enough.

3. Next-fit: Allocate the next available hole that is big enough (from previous attempt).

4. Worst-fit: Allocate the largest hole possible.

· First-fit is easiest, fastest, and leaves less external fragmentation.

Modern Techniques

Paging: Divide program and memory into fixed sized chunks.

· Page: chunk of a process.

· Frame: chunk of memory.

· Size of chunk: power of 2 ranging from 512 to 8k. (Normally 2-8kb)

· Page Table: Shows frame location in memory for each page. Indexed by page number.

· Allocate a page table per process.
Addressing: Each logical address can be divided into a page number and page offset.

· Assume logical address 0x32a56 where 0x32 is the page number and 0xa56 is the page offset.
· Since the offset mask is 0xfff, the page size must be 4k bytes large
· Assume Page Table lists frame 0x200 for page 0x32.

· Physical address: Frame 0x200 + offset 0xa56 = 0x200a56.

· Paging hardware does this translation at run time.

· Page table pointed to by Page Table Base Register.

· Restricts process from accessing memory allocated to others.

Hardware mechanisms: Requires lots of fast memory.

· Registers: Too expensive for too few.

· Memory: Too slow: Requires 2 look-ups: to page table then to memory.

· Associative register = Translation Look-aside Buffer (TLB)
· Contains a key (=page #) and a value (=frame #).
· Entries exist for most recently used lookups only.
· Searches all entries for key in TLB simultaneously.
· TLB hit: Key matches -> Output frame #.
· TLB miss: No match -> Do lookup in page table in memory.
· TLB flushed during context switch
Page Table may contain:

· Frame location of page;

· Present flag: Corresponding page is in memory or not;

· Modify flag: Page has been modified and must be written back to memory;

· Protection: Read or read/write or execute.

· Valid/Invalid bit, or use of Page Table Length Register: Verifies address legal.

Size of page depends on...

· If large:

· Allows smaller page tables.

· Accesses disk more efficiently

· If small:

· Less internal fragmentation.

· Few page faults since principle of locality optimized.

Frame Table: Allows OS to track/allocate frames to processes
· Indexed by frame number

· Indicates frame free/allocated flag, process ID, page #
More complex methods:

· Assume 232 byte memory and 212 (4k) page size = 1 Million entries.

· Paging Directories: 1-4 levels of directories exist which point to page tables.
· Used by SPARC, Motorola 68030
· E.g. Address breakdown: Page directory 10 bits; Page 10 bits; Offset 12 bits.
· Inverted Page table: Indexed by frame gives a page value, owning process.
· Uses an associative register hash table to locate entry, before accessing page table.

· Used by IBM RISC System 6000, IBM RT, and HP workstations.
· Multiple page sizes: Large page for code, small for stack.

· Used by Solaris: 4 & 8k pages

Segmentation: Supports user view of memory.

Program segments may include:

· static data;

· procedure call stack;

· procedure / function code.

Segment Table: Used to translate logical address to physical address.

· Each entry includes:

· Segment base: starting physical address

· Segment limit: size of segment.

· Protection: permissions

· Example:

Segment #

Base

Limit

Protection

0

1400

1000

Execute

1

6300

400

Read

2

4300

400

Read/Write

3

3200

1100

Execute

To calculate address:

· Logical address consists of Segment name (or number) and offset.

· If offset is larger than Limit then trap on invalid address.

· Physical address = Base[Segment#] + offset

· Calculate physical address for segment 2 offset 245 -> 4300+245 = 4545.
Hardware implementation:

· Segment-table register (STR) points to the segment table.

· Segment-table length register (STLR) indicates length of segment table.

Main Advantages of Segmentation:

· Protection is segment specific: read; read/write; execute.

· Can share code or data among different processes.

· Shared segments must have unique IDs.

· Allows programs to be changed and recompiled independently without relinking / reloading (e.g. library files loaded at run time).

Disadvantage: Variable length segments cause external fragmentation.

· More complex

Combining Segmentation and Paging:

· Each process has a segment table.

· Segment table address held in register.

· Segment table points to the page table for the segment.

· Used by: Intel 386 and later

Linking & Loading

Binding: The process of resolving an address: e.g. converting from a symbolic to a logical address, or from a logical to physical address.
Compile: Convert program into machine language called an object module.

Link: Resolve references between objects and join objects to produce load module.

· Load module includes program segment, data segment.

Load: Prepare in-memory image.

· Loads part or all of executable in primary memory

· Process Image: User Data, User Program, System Stack, Process Control Block

Dynamic Linking: Defer linking some external modules until after the load module has been created.

· Load module contains unresolved references to other programs.

· References resolved at load or run time.

· Advantages:

· Easier to incorporate upgraded versions of target modules (e.g. OS utility)

· Ensures language libraries are not part of load modules, saving disk space

· Simplifies automatic code sharing.

Load-Time Dynamic Linking:
· Load modules referenced by application into memory at load time.

· Resolve references as a relative address from start of module.

Run-time Dynamic Linking: Postpone linking until first access occurs.

· A stub is included in the load module for each library-routine reference.

· Stub indicates how to locate module if memory resident, or how to load if not.

· When call made to absent module, OS .locates or loads calling module.

· May be used with segmentation.

Dynamic Loading: A routine is not loaded until it is called.

· Advantage: Unused routines are never loaded.

· Good for infrequently occurring cases: e.g. error routines.

· Total program size may be large but usable size is small.

Paging & Segmentation Worksheet
Assume the following Translation Lookaside Buffer:

	Page
	Frame
	Valid
	Modified

	254
	1a4
	v
	1

	2
	23
	i
	

	25
	63
	v
	1

	95
	1d
	v
	

	12a
	4e
	i
	1

Convert from the following logical addresses to physical addresses, assuming the given page sizes. Some pages may not be loaded into memory.

1) Logical address 0x25436 given a page size of 4k

2) Logical address 0x25436 given a page size of 256

3) Logical address 0x25436 given a page size of 1k
4) Which pages would have to be swapped out (back to disk) if the page was replaced?

Segmentation
Use the following Segmentation table to translate logical into physical addresses. Use the segment number as an index into the table. The bottom four hexadecimal digits are always the offset
	Base
	Limit

	0x2a000
	0x6000

	0x10300
	0x3258

	0x33200
	0x5a00

	0x6a000
	0x1000

1) Logical address: 0x2543a

2) Logical address: 0x151c0

3) Logical address: 0x05abc

4) Double check – are any of these addresses illegal?

Memory Management Lab
You will be doing the UNIX ‘top’ command. The top command displays the following information:

Memory: Total/used/free/buffer: The amount of primary memory that is allocated.

Swap: Total/used/free/cached: The swapped out portion of a task’s total virtual memory image.

PID: Process Id

User: Login name associated with process
PR: Process Priority

NI: Nice (Positive value lowers priority)

SIZE: Size of memory allocated to process

RES: Total amount of physical memory used by the task resident in memory in KB.
SHARE: Amount of memory used by task, shared with other processes.
STAT: Process Status (e.g. R=Running, S=Sleeping, D=Uninterruptible Sleep)
%CPU: Percent of CPU used for the process

%MEM: Percent of primary memory used for the process

TIME: Total CPU time the task has used since it started

COMMAND: The name of the command

You can find out more information on TOP by performing a: $ man top
Directions for Lab:

· Copy the following 3 files from /home/student/Classes/Cs370 to your directory: analyt, t11p1p1.inp, t11p2p2.inp.
· Run ‘top’ on your machine. Record the Common-OS values into the table below.

· Open a second window. Run the following command on it:

$./analyt gs t11p1p1.inp > temp

· Begin to record the values for the Common-OS and also for the analyt process when the process is running. Watch for a few minutes then update the table with any changes you observe (provide a range if the values fluctuate).

· End the analyt session using ctl-c.

· Run the following command in the same window where analyt was aborted:

$./analyt gs t11p2p2.inp > temp

· Begin to record the values for the Common-OS and also for the analyt process when the process is running. Watch for a few minutes then update the table with any changes you observe (provide a range if the values fluctuate).

· Finally analyze the changes and discuss the difference in results in terms of memory usage and how the OS coped.

	
	Not running either program
	Running analyt with T11p1p1.inp
	Running analyt with T11p2p2.inp

	Common OS:
	
	
	

	CPU State:

Us(ed) %

	
	
	

	Memory:

Used/Total

	
	
	

	Swap space:
Used/Total

	
	
	

	Analyt-Specific:
	N.A.
	
	

	PRiority

	
	
	

	VIRTual memory

	
	
	

	RESident memory

	
	
	

	SHaRed
memory

	
	
	

	State

	
	
	

	%CPU

util

	
	
	

	%MEMory

	
	
	

What happens differently when running these two programs and why?

