PAGE
13
Processes

Processes
Operating Systems CS 370
Text:

Chapter 3.
Operating Systems Concepts with Java, 8th Ed., Silberschatz, Glavin, Gagne
Objectives:

During this class the student shall learn to:

· Describe the components of a process image.

· Describe the states a process may be in and how a process moves between states.

· Describe the reasons a process may block.

· Understand the usage of each field of a Process Control Block.

· Define User Mode and Kernel or System Mode, and how each gets set.

· Describe the steps involved in a context switch.

· Define IP address, port address, client, server, stub.

· Describe how RPC and Java RMI send and receive packets.
· Define blocking versus non-blocking, providing examples of each.
Time Allocation:

Class time will be allocated as follows:

Process States and Queues

0.5 hour

PCBs

0.5 hour

Context Switch

0.5 hour

C++ Process syntax

0.5 hour

Minilab: C++ Processes

0.5 hour

Remote communications

0.5 hour

Minilab: C#

0.5 hours

TOTAL:

3.5 hours

Process Description and Control

Program: A passive file on disk containing instructions

Process: An actively executing program

To create a process in POSIX in 'C' or C++:

#include <sys/types.h>
// define pid_t

#include <unistd.h>

// define fork()

…

pid_t process_id;

process_id = fork();

// process_id = pid of child process for parent process

// process_id = 0 for child process

// process_id = -1 if unsuccessful: error code in errno variable.
Process image components include:

· Stack: Local variables and function parameters
· Heap: Dynamically-allocated memory (new)
· Data Section: Global variables
· Program code or text section

· PCB: Current activity: program counter, CPU’s registers

Reasons for Process Creation:

· Interactive log on

· Created by OS to provide a service (e.g. server within client / server)

· Spawned by existing process

· New batch job

Process States
States that a process may be in:

· New: Created but not yet admitted into pool of executable processes by OS

· May wait for sufficient resources to be available before becoming 'Ready'.

· Ready: Process is prepared to execute.

· Running: Currently being executed.

· Waiting or Blocked: Waiting for an event to complete to resume execution (e.g. I/O operation)

· Terminated: Released from pool of executable processes (i.e. completed processing or aborted)

· Statistics must be collected before deleting final process tables.

Context Switch: A running process is interrupted and OS turns over control to another process.

A context switch may occur because the running process:

· Is waiting for an I/O or other event to occur (blocked;

· Is waiting for work to do (via a message) (blocked;

· Has already used its full time allocation and needs to give up the processor for a while (ready.

Additional states used for Virtual Memory include:

· Ready, Suspend: The process is in secondary memory but is available for executions as soon as it is loaded into main memory.

· Blocked, Suspend: The process is in secondary memory and is waiting an event. where:
· Secondary storage = disk

· Active: in memory; Suspend: on disk.

· Remove a process from memory to make room for other processes to run.

· A parent process or O.S may suspend a process for other reasons (e.g. logic, debug)

Dispatcher = Scheduler: That function within OS that decides which process to work on next.

· Processes execute according to priority.

· Round-robin: Scheduler gives fixed amount of processor time to each Ready process in turn.

· Processes are queued according to state (i.e. in Ready Queue or Blocked Queue)

Queues:

· Ready Queue: PCBs waiting to be processed

· Device Queue: PCBs waiting for service from a specific device (e.g., disk)
Process Control Block (PCB)
OS Control Structures include:
Memory Tables:
· Which processes addresses are where in memory?

· Which process / memory addresses are protected (e.g. who can read / write where)?

Devices Tables:
· Which process is using each I/O device?

· Is an I/O in process, and where is it reading from / writing to?

Files Tables: Where do I locate files? What state is this file in (open / closed)?
· This may be part of a file manager separate from the OS.

Processes: Process Tables or PCBs track status of processes.
PCB information includes:

· Process identification: Identifies this process and parent process.

· Process Identifier: Unique numeric identifier (PID in POSIX / UNIX) for the process.

· Parent Process Identifier: PID of parent process

· User identifier.

· Processor State Information: Saved off information during a context switch.

· User-visible Registers: Saved index or accumulator registers accessible to assembly programs.

· Control and Status Registers: Saved PC, condition codes, status registers.

· Stack Pointers: Saved stack pointer: stack is used to hold procedure / system call information.

· Process Control Information: Holds scheduling / state information and pointer / queue links.

· Process State: New / Ready / Running / Blocked / Exit

· Priority.
· Scheduling-related information: Timeslice duration; stats: e.g. how long process ran for last and / or how long waiting to run.

· Event: Event id that process is blocked waiting for.

· Queue links: Allows PCB to be put on Ready or Blocked queues.

· Signals / Messages: Signals from other processes waiting processing by this process.

· Process Privileges: Flags / identifiers indicating permissions.

· Memory Management Table Pointers: describe virtual memory assigned to process.

· Resource Ownership: indication of files, I/O devices used by process.

· Accounting Info: Account numbers, CPU/real time usage, time limits, …

Modes of Operation:

· System or Kernel Mode: Full range of operations allowed for OS:

· enable / disable interrupts;

· modify OS data areas (e.g. PCBs);

· perform I/O instructions.

· User Mode: Less privileged mode allowed for user programs.

A flag in Program Status Word (PSW) indicates mode.

How to change mode:

· A Supervisor Call assembly instruction toggles the mode.

· Enter Kernel Mode: When user makes a system call or interrupt transfers control to a system routine.

· Enter User Mode: OS returns control to user process.

Context Switching
Why does the OS context switch?

· When the running process runs out of time

· Clock interrupt: Current process ran for max. allowable time slice.

· When the process becomes blocked. Examples include:

· Program does a read from terminal, disk, I/O device.

· Memory fault: Process references an address not in memory (must be fetched from disk).

· Possibly when the OS gains control (through an interrupt or trap).

· I/O interrupt: I/O completes for another process. Process removed from blocked queue and put on ready queue.

· Trap: Process aborted due to illegal operation.

What happens during a context switch?

1. Save the context of the processor: i.e. registers.

2. Update PCB to reflect new state: e.g. Blocked

3. Move PCB to appropriate queue: e.g. Blocked.

4. Select another process for execution

5. Update new PCB state, queues.

6. Update memory management data structures.

7. Restore context for new process (i.e. load new registers and run)

Distributed Communication

Client-Server interfaces include:

· Server: Provides a service for many clients (e.g., file server, time server, DB server)

· Client: Application interface for a user, requests service remotely.

Communication Types include:

· Sockets: C/C++, Java
· Remote Procedure Call: C/C++, C#, etc.
· Remote Method Invocation: Java RMI

· Web Interface: dot Net

All methods require:

Protocol:

· TCP: Connection-oriented, performs retransmission (like a phone call)

· UDP: Connectionless, no retransmissions or assurances (like a postcard)

Addressing includes:

· IP Address: Defines destination node (E.g., carrot.cs.uwp.edu might be: 142.65.33.21)
· Port Number: Defines destination application on remote node.
What if you have a bad line…? Possible call semantics:

At-least-once call semantics: Request messages are retransmitted without filtering of duplicates.

At-most-once call semantics: Guarantees that the RPC has been carried out at most one time, but possibly not at all.

Exactly once call semantics: Filtering of duplicates and retransmission of replies without re-executing operations.
· Achieve with: Sequence numbers, retransmissions, and acknowledgements
What types are TCP and UDP?
Sockets
Interface is similar to File System: Open(), Read()/Write(), Close():

For TCP or UDP the following calls are supported:

socket(): create a socket and return a socket address. Select protocol: TCP, UDP or other; stream or datagram.

bind(): Assign port number to socket.

UDP calls: (Connectionless: No retransmission)

sendto(): sends message to UDP.

recvfrom(): collects the first message in the queue at the socket, or waits until a message arrives.

TCP calls: (Connection-oriented: Retransmission supported)

connect(): client request a connection via the socket address of the listening process. Prior binding is not necessary.

listen(): server indicates maximum number of connections to queue.

accept(): server accepts a connection from a client process.

write(): sends a TCP message. Blocks if receive queue is full.

read(): receives a TCP message. Blocks if no message available.

close(): close connection
Other calls exist too.

Message Passing Characteristics:

Flexible: Supports more than the simple request-response interface.

Complex: Must understand all details of the implementation.

Remote Procedure Call (RPC)

Goal: Make distributed computing look local.

· Looks like a procedure call

· Implemented using a request-reply protocol.

How:

1. Allow program A to call a procedure on machine B.

2. Suspend machine A while machine B processes the procedure

3. Pass results back to program A.

· Can't tell if the program is called locally (as a subroutine) or remotely (as a message transfer/response).

Problems with RPC:

· Need to know if parameters are input, output, or input and output.

· Global variables cannot be used.

· Pointers or references cannot be used as is.

· Use call-by-copy/restore: Copy value(s) on the stack, and then copy back after the call to overwrite original value(s).

· Most implementations support call-by-value or call-by-copy-restore.

[image: image1]
Steps in performing remote procedure call:

Server: Registers (or exports) service with port-mapper.

Client: Imports Server’s service information (including port #) from port-mapper on server machine.

1. Client: Generates a request and calls the stub

2. Client-side Stub marshals parameters into message. Transmits message to:

3. Dispatcher: Finds desired procedure and related Server-side Stub.

4. Server-side Stub: Unmarshals parameters and invokes desired procedure for service on server.

5. Server: executes invoked procedure on object and returns parameters via:

6. Server-side Stub: Marshals return value or exception into a parcel and sends to stub.

7. Client-side Stub: Unmarshals return value and passes it to client, returning from procedure call.

Interface Definition Language: defines procedure's name and the types of the parameters.

· Declare parameters as input, output, or input and output.

· Canonical form for integers, characters, Boolean, ASCII/unicode;

· Little-endian vs. Big-endian numbers;

Signature: prototype: procedure name and types of their input and output arguments.

Example: DCE IDL; Sun External Data Representation (XDR); Subset of ASN.1 w/o explicit typing.
Distributed Objects

Definitions:

· Object: Instance of a class

Class: Abstract definition of an object; a blueprint. Contains:

· Methods: Procedures or functions which operate on the object

· State: Data retained about the object

· normally accessible only through methods.

Systems supporting distributed objects:

· Java RMI: Object-oriented RPC

· CORBA: Commercial version developed by OMG standards group

· DCOM or .NET: Microsoft’s version

[image: image2]

Java Remote Method Invocation (RMI)

RMI: Object-oriented implementation of RPC for Java

Features of Java:

1. Object-based

2. Mobile behavior: Objects sent as parameters between client and server include behavior (methods) and attributes.

· Allows methods to be run locally or remotely

· Allows server code to be updated, downloaded to client & run.

· Supports process migration (via ‘agents’).

Steps in performing object method:

A. Assumes Server has registered Object with RMI Registry, and

B. Client performs a lookup with RMI Registry to find appropriate reference.

1. (Client-side) Stub: Stub downloaded to client side. Stub marshals parameters and method name into parcel (=message). Transmits parcel to:

2. (Server-side) Skeleton: Unmarshals parameters and invokes desired method on server.

3. Server: executes invoked method on object and returns parameters via:

4. (Server-side) Skeleton: Marshals return value or exception into a parcel and sends to stub.

5. (Client-side) Stub: Unmarshals return value and passes it to client

Marshaling = Packing = Serialization. If parameter is:

· Local: Passed by copy or object serialization

· Remote: Passed by reference
Web Interface

Notice that this interface is specific to include a form, processing on the server, and form output.
Issues
· Processing: Where does processing occur: client or server?

· Buffering: How much space do we reserve for message(s)?
· Synchronization: How do we know that the other process got the message?

Processing: Where does processing occur: client or server?

· Sockets, RPC, RMI: Your choice, can happen on either client or server

· .NET: Happens on server

Buffering: How much space should be allocated for message queues?

Buffer = Temporary memory used to hold incoming or outgoing information, during I/O
· Zero Capacity: No waiting messages: sender must block until receiver reads.

· Bounded Capacity: When queue is full, sender blocks.

· Unbounded Capacity: The sender never blocks, and can always generate more messages.
Synchronization: How do we know the receiving process got the message?
Blocking:

· Send waits until message is received.

· Receive waits until message is received and available to process.
· Example: RPC, Java RMI both block until the remote procedure completes
Non-blocking:

· Send returns before message is received.

· Receive returns NULL if nothing available. (Less common)
· Example: Sockets can send() without receive()
What calls are blocking versus non-blocking that you know?
Mini-Lab: C++ Processes
Background information
PS – report a snapshot of current processes

· Use options –a (all) –l (long mode): $ ps –al

· S: State (varies from OS version to OS version)
· R=Runnable (Running)

· S=Sleeping = Blocked = Waiting for event
· D=Uninterruptible sleep (usually I/O)

· T=Traced or stopped = Breakpoint

· X=Dead = Terminated

· Z=Zombie = Terminated, just waiting to be cleaned out.

· UID: User ID: Login name translated to numeric form

· PID: Process ID: Social Security Number of each process

· PPID: Parent Process ID: Process responsible for spawning this process

· PRI: Priority

· C: CPU utilization %

· NI: Nice: If positive, gives priority to other processes. If negative, not nice.

· WCHAN: What Sleep State is waiting on
· TTY: Terminal process is associated with

· TIME: CPU time used so far

· CMD: Name of command
Lab Instructions

First download the fork.cpp file from my web page. Compile it (according to directions in beginning of file). Run the fork program. The fork program starts three children, where each child is assigned a laugh type (Ha, Ho, or He). Each child process repetitively prints its laugh, ten laughs per row.

Please run this program a few different ways to complete the following table:

1) Run children with a sleep time of 0, thousands of iterations

2) Run children with sleep time of 1, 5-15 iterations

3) Retry some options with wait() calls commented out: trying Ctl-C, testing Parent Process ID.
Use ‘ps –al’ or ‘ps –el’ while running the C program to complete this table.

You may kill obstinate processes using the ‘kill -9 <PID>’ command, where PID = Process ID.

	
	Parent
	Children, sleep=0
	Children, sleep=1

	Process ID(s)
(with and without wait() calls)
	
	
	

	States seen via PS

	
	
	

	Priority: Initial, ending
	
	
	

	Process size

	
	
	

1) When you enter a child sleep time of 0, what do you see? Are context switches occurring because of blocking/sleeping or because of time slice interrupts? (Hint: look at the State and WChan column.) If because of blocking, why is it blocking (I/O, endline, periodic, buffer full)?
2) When running with a sleep time of 1, what do you see? Are context switches occurring because of blocking or because of time slice interrupts? If because of blocking, why is it blocking (I/O, endline, periodic, buffer full)? When processes are sleeping, what function are they waiting on (in WChan)?

3) What happens when you perform a CTL-C? How many processes are stopped? Which process(es) does the CTL-C affect? Uncomment the wait() calls and test again. Why do you think you see a difference?
4) What priority does bash (the shell) run at?

Try the command: $ ps –Al
This shows ALL processes running on the OS, not just the ones associated with a terminal.

5) Some kernel processes are higher priority. What is the priority of the kernel processes?
Client Appl

Client Stub

TCP/UDP

Server Application

Server Stub

TCP/UDP

Function

called

Function executed

News Object

News Client

Database Object

Fetch()

Read()

URL(80)

 Server

(Server processing)

HTTP Form

Form completed

Output

Client

PAGE

