PAGE  
16
CPU Scheduling


Operating Systems CS 370
CPU Scheduling

Text:  

Chapter 5
Operating Systems Concepts with Java, 7th Ed., Silberschatz, Galvin, Gagne

Objectives:

During this class, the student shall be able to:

· Define I/O-bound, CPU-bound and race condition.

· Define the functions of the short-term, long-term scheduler.

· Describe the difference between preemptive and nonpreemptive schedulers.

· Define and be able to calculate: CPU utilization, throughput, wait time, response time, and turnaround time.

· Be able to calculate the order and timing of processes through the CPU using the following algorithms: FCFS, RR, Priority, Shortest Job First, Shortest Remaining Time, Multilevel Feedback Queue.

· Define the difference between SMP and asymmetric multiprocessing as it relates to operating systems.

· Define processor affinity and load balancing, and why each is important.

Time Allocation:

Class time will be allocated as follows:


Intro





1/2 hour


Scheduling Criteria



1/2 hour


Scheduling Algorithms


2 hours


TOTAL:




3 hours

CPU Scheduling

Introduction

Program execution is characterized by alternating sequences of:

· CPU burst

· I/O burst

Two types of programs:

· I/O-bound: short CPU bursts

· CPU-bound: long CPU bursts.

· Goal: Balancing I/O-bound and CPU-bound jobs.

CPU Scheduler

· Long Term Scheduling: Decides when to add to the pool of processes to be executed.

Controls degree of multiprogramming.

· When a job terminates, scheduler may decide to add one or more jobs.

· Batch jobs: Spooled on disk until ready to process

· Interactive: User logs in O.S. must accept new process.

· Medium Term Scheduling: Decides when to add to the number of processes that are partially or fully in main memory.

Who wins memory? 

Global scope memory allocation impacts decision.

· Short Term Scheduler: Decides which available process will be executed next by the processor.

Short Term Scheduler:

· When CPU becomes idle, OS selects a process in ready queue to be executed.

· The Ready queue holds PCBs.

Short Term Scheduling functions include:

· Enqueuer function: Adds PCB to appropriate Ready Queue (possibly after deciding priority).

· Dispatcher function: Selects process for execution and passes control to it.  Includes:

Switches context

Switches to user mode

Jumps to proper location in user program.

CPU reschedules processes:

1. When context switches from running state to blocked state (e.g. I/O request) or yields CPU.

2. When process terminates.

3. When context switches from running state to ready state (e.g. timer interrupt)

4. When context switches from blocked state to ready state (e.g. I/O completion)

Two types of scheduling:

Nonpreemptive:  Scheduling only takes place during 1 & 2 above.

· The process retains the CPU until it releases the CPU by terminating or by blocking.

· Used by Microsoft Windows 3.X

Preemptive:  Scheduling may take place during all four event types.

· Can preempt on: clock or I/O interrupt, OS call, signal.

· Advantage: Prevents any process from monopolizing the processor.

· Disadvantage: More overhead due to context switching.

· Used by Microsoft Windows 95 and later, UNIX.

Race Condition Problem: If two processes share data, one may be in midst of updating the data when it is preempted and second process is run

Problem: Single processor, preemptive OS

Problem: Multiprocessor, preemptive or non-preemptive OS

Solution: Semaphores

Scheduling Criteria

Statistics to measure successfulness of CPU scheduling algorithms:

· Note: 1 Second = 1000ms (milliseconds)

· Time_to_Process = Wait_Time + Service_Time

System Oriented Statistics

· CPU Utilization: % of time CPU is busy processing programs.

%Utilization = Arrival_Rate * Service_Time

In 1 avg. second 7 processes arrive, with service time = 100 ms each: Utilization = 7*.1 = 70%

In real world, it should range from 40% to 90%.

· Throughput: The number of processes that are completed per time unit.

Assume processing times: Process 1: 300 ms; Process 2: 400ms; Process 3: 300ms.

Throughput = 3 processes in 1 second.

· Wait Time: Sum of periods spent waiting in the ready queue.

· Wait Time = EndTime – ArrivalTime – ServiceTime

User Oriented Statistics

· Turnaround Time: The interval from time of submission to time of completion.

Used also with batch programs.

Includes non-CPU times: waiting to get into memory, waiting in ready queue, doing I/O.

TurnaroundTime = EndTime – ArrivalTime 

· Response Time: The interval from submission of a request until first response is produced.

Used with interactive programs.

Does not include time it takes to output the response (to the output device).

2 Seconds or less desirable.

Other concerns:

· Predictability: Response time does not vary widely.

· Optimize average, but guarantee all users get good service.

Scheduling Algorithms

First Come First Serve  = FCFS or FIFO

FCFS:  Processes that request the CPU first are allocated the CPU first.

· Implemented with a FIFO queue of PCBs.

· Nonpreemptive



Process
Arrive Time

Burst Time


P1


0


24



P2


0


3



P3


0


3

                                                   P1                               P2     P3



|------------------------------------------------|------|------|



0                                                          24    27     30

Average wait time: (0+24+27)/3 = 17 ms

Average turnaround time: (24+27+30)/3 = 81/3 = 27 ms

What happens if the processes arrive in order P2, P3, P1?  How does that impact Wait, Turnaround time?
Conclusion: 

· CPU-bound processes may get and hold (hog) the CPU.

· Varied and poor response for I/O-bound processes.

· Poor use of I/O devices.

Shortest Job First
Shortest Job First: CPU is assigned to the process that has the smallest expected CPU burst.

· Examines the length of the next CPU-burst, not the total process length.

· Nonpreemptive

· Used in long-term scheduling

· Problem: Must know length of next CPU request.



Process
Arrive Time

Burst Time


P1


0


6



P2


0


8



P3


0


7



P4


0


3

                         P4        P1            P3               P2



|------|------------|--------------|----------------|



0      3              9                16                 24

Average wait time: (0+3+9+16)/4 = 7ms.

Average turnaround time: (3+9+16+24)/4 = 13ms.

Conclusion:

· Problems:

Starvation: Longer processes may never get time.

No preemption: Short processes must wait for a CPU-bound process.

How to predict length:

· Batch: Use process time limit requested when submitting job.

· Interactive: Take running average of burst length and use as predictor.

How to calculate running average length?


S(n+1) = pt(n) + (1-p)S(n)


where S(n) = running average at time n



t(n) = burst length at time n



p = weight factor, where 0 < p < 1

When p = 1/2 recent history and past history are equally weighted.

Larger p results in more weight on recent time intervals.

Given p = 0.5


S(n+1)
t(n)

S(n)

8

6

10


6

4

8


6

6

6


5

4

6

Shortest Remaining Time First

Shortest-Remaining-Time-First: Preempts current process if another process would complete sooner.

· Always selects the process which will complete the soonest (like Shortest-Process-First)

· Preemptive.



Process
Arrive Time

Burst Time


P1


0


8



P2


1


4



P3


2


9



P4


3


5

                       P1  P2        P4           P1                P3



|--|--------|----------|--------------|------------------|



0 1         5           10              17                    26

Average wait time: ((10-1) + (1-1) + (17-2) + (5-3)) / 4 = 26/4 = 6.5ms

Average turnaround time: (17 + (5-1) + (10-3) + (26-2)) / 4 = 13ms

Conclusion:

· Advantage: A short job is given immediate preference to a running longer job.

Priority Scheduling

Priority Scheduling: High priority processes scheduled before low priority processes.

· A priority is associated with each process.

· Priority defined by: (E.g.) Foreground, Background, Real Time, Nice

· Preemptive

Priorities can be defined:

· Number of priorities may range.  Assume 0-1024:

High priority may be priority 0 or 1024, depending on system.

· External or Internal Priorities:  Is priority determined external or internal to the O.S?

External:  Importance of process, $ paid for computer use, department priority.

Internal: Time limits, ratio of average I/O burst to average CPU burst, Aging.

Assume lower number is higher priority:


Process
Arrive Time

Burst Time

Priority


P1


0


10

3



P2


0


1

1



P3


1


2

3



P4


1


1

4



P5


1


5

2



 P2             P5                                   P1                        P3     P4



|----|--------------------|----------------------------------------|--------|----|



0    1                       6                                                 16       18  19

Wait Times: 

Priority 1: 0ms

Priority 2: 0ms

Priority 3: (6 + (16-1)) / 2 = 10.5ms

Priority 4: 18-1 = 17ms

How does the above change if P6 arrives at time 8 with a priority of 1 and a burst time of 3?

Conclusion: 

· Problems: Starvation or indefinite blocking.

· Solution: Internal Priority

Aging: Raise priority for processes that have waited for a long time.

Example: Raise priority by one when process has waited 1 minute.

Eventually even lowest priority process becomes the highest priority process.

Round Robin

Round Robin: Every process gets a turn = one time quantum at CPU.

· Timer interrupt causes scheduler to context switch.

· Time quantum = time slice: 10-100ms long.

· Preemptive

· Ready queue is circular queue.

Assume time quantum is 4 ms long.


Process
Arrive Time

Burst Time


P1


0


24



P2


0


3



P3


0


6


    P1     P2    P3     P1    P3     P1    P1     P1        P1


|--------|------|------|--------|------|-------|--------|--------|--------|


0        4       7      11       15      17       21       25       29       33

Average Wait Time: (4+9+11)/3 = 8 ms

Conclusion: Performance depends heavily on size of time quantum.

· Optimum: 80% of CPU bursts should be < time quantum.

· Optimum: Time quantum should be large with respect to context switch time.

If context switch is approx. 10% of time quantum, then about 10% of CPU time is spent in context switch.

· Advantage: Performs reasonably well with short-term jobs.

· Disadvantage: Additional overhead required due to additional context switching.

· Disadvantage: I/O bound processes rarely use entire timeslice before blocking due to I/O.

Favors CPU-bound processes somewhat.

Multi-level Feedback Queue

Multilevel Feedback Queue:  Processes hogging CPU sink to lower priority levels.

1. All processes start at Request Queue 0 (highest priority).

2. When timeslice completed put in Request Queue 1.

3. When timeslice completed put in Request Queue 2.

4. When timeslice completed put in RQ ...

OS Implementation:

· Operates strictly on priority:

Schedules processes in RQ 0 until it is empty, then processes RQ1...

· All queues processed in FCFS order, except lowest priority queue that operates in RR.

· Lower priority queues may get increasing time quantums.

· Problem: Low priority queues may starve

Solution: Allow processes that have waited a certain length of time to rise back up the priority queues.

Assume RQ0 time quantum = 4, and RQ doubles the time quantum.



Process
Arrive Time

Burst Time


P1


0


24



P2


0


3



P3


6


3



P4


6


8

               P1     P2     P3      P4          P1            P4                P1


|--------|------|------|--------|----------------|--------|------------------------|


0         4      7     10       14                 22       26                        38

Conclusion:

· Advantage: General CPU scheduling solution

· Disadvantage: Complex

Multiprocessing
Symmetric MultiProcessing (SMP):  Each processor runs an OS scheduler.
Asymmetric MultiProcessing:  One processor runs the scheduler and assigns jobs to the other processors

Load Balancing: Attempts to equalize the load between all processors.

· This can be accomplished by migrating processes between processors.
· Problem:  A process can already be in cache and repopulating the new cache may take time.

· Solution:  Processor Affinity:  Assign a process to the processor where its cache is already loaded

Real Systems

Linux 
Three scheduling classes:

· FIFO: FIFO real-time threads (preemptive by priority)

· RR: Round-robin real-time threads (preemptive by timeslice, scheduled by priority)

· Other: Non-real time threads (run if no real-time threads)

· Non-real-time: priorities 100-139, default 120

· Active queue list and expired queue list

Scheduling Algorithm:

· Round-Robin within Priority: Time slices range between 10-200 ms, higher priority -> larger time slices

· Priority altered to favor I/O-bound tasks over CPU-bound tasks; high-sleep rate I/O bound highest priority.

Windows 
· Fully preemptive: Higher-numbered priority process preempts lower priority process

· 32 Ready Queues

· 16-31: Real-time queues: Priority is fixed
· 1-15: Variable level queues: For normal applications

· Priority is lowered if timeslice completes or is a background window.
· Priority is raised if I/O completes (keyboard raised lots, disk some)

· 0: Memory management

· Idle Thread: Spare time or idle time task runs when nothing else runs
Java Thread Scheduling

· JVM uses Priority-based scheduling, but may or may not be Preemptive

· May or may not use timeslicing (not checked recently)

If timeslicing not used, a thread may yield control using Thread.yield()

· Priorities range from 1 to 10, where 1 is low and 10 is high.

Priority can be changed using setPriority() method.

The JVM never alters the priority of a thread.

Algorithm Evaluation

· Deterministic Modeling: Use a fixed scenario of processes/threads arriving, as in scheduling algorithm examples above.

· Queuing Models: Uses mathematical (probabilistic) models to analyze given arrival rates, service times, (and potentially number of processors) to derive average wait time and turnaround time.

· Simulation: Randomly generates job arrivals with random service times, and simulates the processing of these random jobs over a sufficiently long duration of time to generate average wait time and turnaround times. 
Queuing Statistics

· Inter-arrival Time:  The average timer between incoming requests

· Arrival Rate:  1/InterArrivalTime = The number of requests that arrive on average in a specified time unit

· Service Time:  The average time it takes to service a request

· Service Rate:  1/ServiceTime = The number of requests that can be handled in a specified time unit.

· Offered Rate: ArrivalRate/ServiceRate = ServiceTime/InterArrivalTime = The average number of requests being handled in a system, if no requests are discarded.

Exercise

Assume the following conditions (where low numbers are higher priority).  For each method, draw a timeline and complete the per-job and total Wait Time and Turnaround Time.
Shortest Job First (No Preemption)

	Job #
	Arrival Time
	Service Time
	Turnaround Time
	Wait Time

	1


	0
	2
	
	

	2


	0
	4
	
	

	3


	3
	1
	
	

	4


	5
	8
	
	

	5


	6
	3
	
	

	6


	11
	3
	
	

	Total /Avg
	
	
	
	


Shortest Remaining Time First (Preemption)

	Job #
	Arrival Time
	Service Time
	Turnaround Time
	Wait Time

	1


	0
	2
	
	

	2


	0
	4
	
	

	3


	3
	1
	
	

	4


	5
	8
	
	

	5


	6
	3
	
	

	6


	11
	3
	
	

	Total /Avg
	
	
	
	


Priority (Preemptive) Lower numbers = higher priority.
	Job #
	Arrival Time
	Priority
	Service Time
	Turnaround Time
	Wait Time

	1


	0
	10
	2
	
	

	2


	0
	10
	4
	
	

	3


	3
	3
	1
	
	

	4


	5
	10
	8
	
	

	5


	6
	3
	3
	
	

	6


	11
	10
	3
	
	

	Total /Avg
	
	
	
	
	


Round Robin (Timeslice = 3 ms)

	Job #
	Arrival Time
	Service Time
	Turnaround Time
	Wait Time

	1


	0
	2
	
	

	2


	0
	4
	
	

	3


	3
	1
	
	

	4


	5
	8
	
	

	5


	6
	3
	
	

	6


	11
	3
	
	

	Total /Avg
	
	
	
	


PAGE  

