PAGE
5
Process Synchronization

Process Synchronization
Operating Systems CS 370
Text:

Chapter 6 through 6.8.4
Operating Systems Concepts with Java, 8th Ed., Silberschatz, Galvin, Gagne

Objectives:

During this class the student shall learn to:

· Define atomic operation, race condition, critical region (or critical section), and mutual exclusion, starvation, deadlock.

· List three hardware mechanisms for ensuring mutual exclusion. Describe how each work, and which might work for a multiprocessor configuration.
· Describe the differences between a binary semaphore and a counting semaphore, and know how to use each.

· Describe when a semaphore blocks and unblocks PCBs.

· Understand the code for a producer/consumer problem, readers/writers problem, and other synchronization problems.
· Describe how a monitor works and how to use Java monitors.

· Program synchronization techniques using Java.

Time Allocation:

Class time will be allocated as follows:

Intro to Mutual Exclusion

1/4 hour

Hardware mechanisms

1/4 hour

Peterson’s Software Solution

1/2 hour

Semaphores

1/2 hour

2 Semaphore Labs

1 hour

Example Problems

1 hour

Monitors

1/4 hour

Java & Solutions

3/4 hour

TOTAL:

3.25 hours

Concurrency:

Mutual Exclusion and Synchronization

Definitions

Concurrency: Support of multiple processes at any time.

· Uniprocessor: One process being executed at a time, but can be preempted or interrupted by another process at any time.

· Multiprocessor: Multiple processes being executed at any time.

Mutual Exclusion

Processes may share resources with each other:

· Devices: printer, disk, ...

· Data: "shared memory"

This leads to problems:

· One process can overwrite another processes' output.

Example 1: I/O buffers as a shared resource

Thread P1

Thread P2

cin >> input;

..

// read in "hello" into global

..

cin >> input;

// read in "good-bye" into global

out = input;

out = input;

// do a string copy (...use strcpy())

cout << out;

..

// print out "good-bye"

..

cout << out;

// print out "good-bye"

Example 2: Data as a shared resource

P1:
a = a + 1;

b = b + 1;

P2:
b = 2 * b;

a = 2 * a;

Potential outcomes if initially a=1, b=2:

a = a + 1;
b = 2 * b;
a = a + 1;
b = 2 * b;

b = 2 * b;
a = 2 * a;
b = b + 1;
a = a + 1;

b = b + 1;
a = a + 1;
b = 2 * b;
a = 2 * a;

a = 2 * a;
b = b + 1;
a = 2 * a;
b = b + 1;

Result:
a=4,b=5
a=3,b=5
a=4,b=6
a=4,b=5

Race Condition: Different sequences produce different results. The outcome depends upon which process/thread wins the ‘race’.

Atomic Operation: A set of instructions executed as one function, which cannot be interrupted by another process.

Critical Section or Critical Region: A segment of code where only one process may execute at a time.

1. The process enters the critical region.

2. The process modifies the shared memory or uses the shared device.

3. The process exits the critical region.

Mutual Exclusion: If process P is executing in its critical section then no other processes can be executing in their critical sections.

· Problems:

· Starvation: One process never gets the resource because other processes are busy with it.

· Deadlock: Everyone wants something held by someone else, which the holders won't give up until they get what they want.

Hardware Mechanisms for Mutual Exclusion

Disable Interrupts
· When a process wishes to enter a critical region:

1. Disables interrupts.

2. Enter the critical region and do work.

3. Enable interrupts.

4. (Continue to do remainder work not involving critical region.)

· Problems:

· Slows down interrupt processing, and ability to interleave programs.

· Does not work with multiprocessor configurations.

Test and Set Instruction
· When a process wishes to enter a critical region, the process executes one assembly instruction which performs the following atomically:

BOOLEAN testset(flag)

if flag == FALSE

// no one else is in critical region

flag = TRUE;

// set critical region is busy

return TRUE;

// gained access to critical region

else return FALSE;

// critical region is already busy

· A process uses the Test and Set Instruction as follows:

do forever

while testset(obtain_access) == FALSE

; // do nothing

do work in critical section

obtain_access = FALSE;

do remaining work

enddo

Swap Instruction

Public dataA swap(dataB) {

temp = dataA.get()

dataA.set(dataB)

dataB.set(temp)

}

· dataA is initialized to True, while dataB is always False.

· If dataA returns true, it is set to false for future reference

· When the user has completed using the critical section, they swap True into dataA, making it available for the next user entry
Test-and-Set and Swap must be carefully implemented in a multiprocessor configuration to implement Mutual Exclusion.
Peterson's Solution: Software solution

[1] When a process wishes to enter a critical region:

1. Indicate on your blackboard that you want to enter the critical region.

2. Indicate on the referee blackboard that it is the other processes turn.

3. If the referee indicates that it is the other processes turn and the other process has indicated on their blackboard that they want to enter the critical region, wait until the referee indicates it is your turn, or the other process indicates it does not want to enter the critical region.

4. Enter the critical region and do work.

5. Indicate on your blackboard that you do not want to enter the critical region.

6. (Continue to do remainder work not involving critical region.)

Class MutualExclusion

private int n= ...; /*number of processes*/

private CriticalSection mutex;

public void run(int id)

{

while (1) {

mutex.enterCriticalSection();

<critical section>

mutex.exitCriticalSection();

<remainder>

}

}

main()

{

…
/*parallel process begin*/

P1.start(1);

P2.start(2);

...

PN.start(n);

}

Operating System Mechanisms which Provide Mutual Exclusion

Semaphores

Binary Semaphore: May assume values 0 and 1 only.

· Mutex: MUTual EXclusion

· All processes share a semaphore variable: mutex
· To enter a critical region the process performs a wait() or P() or acquire() or enterCriticalSection().
· P() = Dutch Proberen means test = acquire()

· A process performs a release() or signal() or V() or exitCriticalSection() when exiting a critical region.

· V() = Dutch Verhogen means increment = release()

· Indivisible: No two threads can execute simultaneously in a critical section.

Implementation details:

· The acquire() and release() are atomic: they cannot be interrupted.

· A queue holds PCBs waiting for the semaphore.

· Processes may be removed in FIFO order.

· No process may be delayed indefinitely.

class Semaphore {

private int value;

public Semaphore() {

value = 0;

}

public Semaphore(int value) {

this.value = value;

}

public synchronized void acquire()

throws InterruptedException {

while (value == 0)

wait();

value--;

}

public synchronized void release() {

++value;

notify();

}

}

Counting Semaphore: May assume multiple values (not just 0, 1)

· Used when counting resources which are being processed by multiple processes.

· The acquire() decrements the semaphore value.

· If the semaphore value becomes negative, the process is blocked.

· The release() increments the semaphore value.

· If the semaphore becomes not positive, a waiting process is unblocked.

· The semaphore may be initialized to a nonnegative value (e.g. 1)

Producer / Consumer:
· Producer: puts information into the buffer

· Consumer: takes information out of the buffer.

· Trouble: Producer wants to produce and buffer is full.

· Solution: Producer should sleep until consumer has consumed a buffer.

· Trouble: Consumer wants to consume and buffer is empty.

· Solution: Consumer should sleep until the producer has produced a buffer.

Example: Producer / Consumer Problem

#define N 100

… definitions ….

CriticalSection mutex;

// access to crit reg.

Semaphore empty = new Semaphore(N);

// counts empty buffer slots

Semaphore full = new Semaphore(0);

// counts full buffer slots

…

void producer(void) {

int item;

while (true) {

// infinite loop

produce_item(item);

// generate item to put in buffer

empty.acquire();

// decrement empty count

mutex.acquire();

// enter critical section

enter_item(item);

// put new item in buffer

mutex.release();

// leave critical section()

full.release();

// increment count of full slots

}

}

void consumer(void) {

int item;

while (true) {

full.acquire();

// decrement full count

mutex.acquire();

// enter critical region

item = remove_item();
// take item from buffer

mutex.release();

// leave critical region

empty.release();

// increment count of empty slots

consume_item(item);
// do something with item

}

}

Example: The Sleeping Barber
Notes:

· The barbershop has: one barber, one barber chair, n chairs for waiting customers.

· If there are no customers waiting, the barber sits down in the barber chair and falls asleep.

· When a customer arrives, he wakes the barber.

· If a customer arrives while barber is busy, he sits down (if room) or leaves (if no room).

Example uses three semaphores:

· customers: counts waiting customers (excluding customer having hair cut)

· variable waiting = customers but can be read

· barbers: # of barbers who are idle waiting for customers (0 or 1)

· mutex: MUTual EXclusion

#define CHAIRS 5

// # chairs for waiting customers

Semaphore customers = new Semaphore(0);
// # of customers waiting for service

Semaphore barbers = new Semaphore(0);
// # of barbers waiting for customers

Semaphore mutex = new Semaphore(1);
// for mutual exclusion

int waiting = 0;

// customers are waiting (not being cut)

void barber(void)

{

while (true) {

// infinite loop

customers.acquire();
// go to sleep if # of custs is 0

mutex.acquire(); // acquire access to waiting

waiting = waiting - 1;
// decrement # waiting customers

mutex.release();

// release waiting

barbers.release();

// barber is now ready to cut hair

cut_hair();

// cut hair (outside critical region)

}

}

void customer(void)

{

mutex.acquire();
// enter critical region

if (waiting < CHAIRS) {
// if there are no free chairs leave

waiting++;

// increment count of waiting customers

mutex.release(); // release access to 'waiting'

customers.release();
// wake up barber if necessary

barbers.acquire();
// go to sleep if # of free barbers is 0

get_haircut();

// be seated and be serviced

else

mutex.release();
 // shop is full; do not wait

}

}

Monitor

A monitor consists of:

· Data which shall be accessed in a mutually exclusive manner;

· A number of procedures that access the data.

Implementation Note:

· Avoids problems with semaphores (when not implemented correctly).

· Only one process at a time can be active in a monitor procedure.

· Any subsequent call must wait until an active call either has been completed, or is waiting on a condition variable.

Example in Java-like code:

monitor : BufferAllocator

buffer freepool;
// free buffer pool

ConditionVariable nonempty;

synchronized buffer new () {

while (freepool.is_empty())

 wait();

// remove buffer b from free buffer pool and return buffer

b= freepool.remove_first();

return b;

}

synchronized void delete(buffer b) {

freepool.insert(b);

notify();

}

end_Monitor BufferAllocator

producer() {

buffer b;

while (not_finished) {

b = BufferAllocator.new();

... fill buffer b ;

bounded_buffer.append(b);

}

}

consumer() {

buffer b;

while (not_finished) {

b = bounded_buffer.remove_first();

... empty buffer b ... ;

BufferAllocator.delete(b);

}

}
Java Implementation
Java:

· Yield Control: Yield()

· Monitor: synchronized

· Single condition variable: with wait(), notify()

Synchronized: Monitor implementation
· Each object has a lock

· Each critical section function can be labeled as ‘synchronized’:

public synchronized void enter()

· May enter multiple synchronized functions for same or different objects.

Simple condition variable implementation:

· One unnamed condition variable with one queue per object.

Wait():

· Releases the lock for the object

· Blocks the thread

· Queues thread on wait queue for the object

Notify():

· Selects an arbitrary thread from wait queue for object

· Sets selected thread to Runnable

· Has no effect if wait queue is empty.

· Signaler proceeds not waiter: Condition may change again due to signaler or a newly entering thread. So program: while (condition) wait();

NotifyAll():

· Wakes up all threads on wait queue for object.

· Threads decide among themselves who runs next. (Less efficient)

Example: Readers / Writers Problem

· There is a data area (e.g. file) shared by a number of processes.

· Rules are:

· Any number of readers may simultaneously read the file.
· Only one writer at a time may write to the file.
· If a writer is writing to the file, no reader may read it.
· Solutions:

· Readers have priority. As long as there is a reader reading, the writers must wait.
· Writers have priority. As long as there is a writer, readers must wait.
· When Writer arrives, readers arriving after Writer wait until Writer completes.
· Problem: Starvation by readers or writers.

· Solutions shown in text will be discussed in class: Fig 6.14-6.19
Dining Philosophers Problem

· Five philosophers alternately eat and think.

· The table has five plates and 5 forks.

· Each philosopher requires two forks to eat: philosopher must find fork on left and fork on right available.

· See Figures 6.21, 6.22, 6.26 in text

· Starvation & Deadlock possible: How can these problems occur?

· What solutions are available?
Lab Exercise
Get the Vote.java file from my web page.

Test one: Comment out the acquire() and release() code from the run() function. How many voters can be in the voting booth simultaneously? What output do you get? How many votes does each thread get?
Test two: Reapply the acquire() and release() code within the run() function. How many voters are ever in the voting booth simultaneously? How many votes does each thread get? Do the threads take turns fairly? What do you see?
Test three: Change the Semaphore constructor call to initialize the value to two (instead of one). How many voters can enter the voting booth simultaneously? What is happening and why?

Test four: Comment out the acquire() code from the run() function. Set the Semaphore constructor call to initialize the semaphore value to one. How many voters are in the voting booth simultaneously? What is happening and why?

Test five: Comment out the release() code from the run() function. Reinstall the acquire() code from the run() function. How many voters are in the voting booth simultaneously? What is happening and why?

Test six: Uncomment the barrier.await() (and semaphore release()) code within the run() function, to enable the barrier to execute. How many voters are ever in the voting booth simultaneously? How many votes does each thread get? Do the threads take turns fairly? What do you see?

The Dining Philosophers – In class Exercise

Consider ‘Dining Philosophers Problem’
Describe what is happening in your own words in this figure.
Deadlock can occur under a certain condition. How?

What should each chop stick semaphore be initialized to? Why?

It is possible to ensure that deadlock does not occur by only allowing a certain number of philosophers into the dining room. Add lines of code to implement this solution. (Hint: This requires one more semaphore.) What should the semaphore be initialized to?

Consider ‘Solution to Dining Philosophers’
When does a philosopher wait?

When does a philosopher signal?

What conditions must be true for a philosopher to start eating?

How does this solution ensure deadlock does not occur?

Will there be extraneous notifys for which no waits occur? When would this occur and what would be the effect?
PAGE

