PAGE
2
Threads

Threads

Operating Systems 370

Text:

Chapter 4
Operating System Concepts with Java, Silberschatz, Glavin, Gagne
Objectives:

During this class the student shall be able to:

· List items threads share with other threads of the same process.

· Describe the states a thread may be in.

· Describe the differences between user and kernel threads, and describe the advantages of different models: Many-to-one, one-to-one, many-to-many.
· Describe how processes differ from threads.

· Define the advantages and disadvantages of threads versus processes.

· Define deferred cancellation, and describe why it is better than asynchronous cancellation

· Define thread pool and describe the advantages of a thread pool.

· Program java threads.
Time Allocation:

Class time will be allocated as follows:

Intro.

0.5 hour

Thread models

0.5 hour

Threads versus Processes

0.5 hour

Java Syntax

0.5 hour

Homework 2 Discussion

0.5 hour

Mini-Lab

1 hour

TOTAL:

3.5 hours

Threads

Use of threads:

· Foreground / Background work: Allocation of different functions to different threads.

· Asynchronous processing: e.g. periodic backups.

· Speed execution: simultaneous execution on multiprocessors

· Organizing programs: easier to program multiple (simultaneous) functions.

Example Use:

Web server: When request is received, server process creates thread to service request.

Unit of execution:

· Process: Has own program code / data area.
· Thread: Shares program code / data area with other threads in the same process.
Each Thread must have separate:

· Program counter

· Register set

· Stack: including local variables, procedure arguments
Shared resources with other threads:

· Code or text section

· Data section

· O.S resources: e.g. open files, signals.

Reentrant Code: Multiple threads can simultaneously execute the same code

· Not reentrant: The threads all modify the same data, causing unexpected results.

· Shared data: globals, heap data or data section data

· Not-shared data: procedures: parameters, local variables, or stack data

· Synchronized data: e.g., semaphores

Thread States (Example Java):

· New = New: Placed on the ready list.
· Blocked = Wait for an event
· Runnable = Ready or Running
· Dead = Exit
Programming Threads

Thread functions: POSIX (Standard UNIX C/C++):
· pthread_create(): creates a thread
· pthread_exit(): kills itself
· pthread_kill(): sends a signal to a specified thread
· pthread_join(): waits for a thread to exit.
· pthread_self(): returns thread id
· synchronization functions
Signals can send <ctl-C> or exceptions to other threads.
· Can specify thread_id to send signal to
· Thread can specify which signal it will handle
Java Implementation

· Define a class to contain a thread, by defining:
· class Worker1 extends Thread OR

· class Worker2 implements Runnable (Recommended)

· The parent thread creates the object and invokes its start() function.
· The start function creates the child thread and calls the object’s run() function.

· Thread terminates when thread returns from run().

Thread Pool: Allocate N threads to handle all requests

· Enables threads to be allocated and deallocated quickly.
· Enables groups of threads to be allocated in a tree format – and destroyed.

· Enables many tasks to be allocated to a fixed set of threads; tasks may wait until a thread becomes free.

· Enables a parent thread to send interrupts to a set of threads easily.

Terminating other threads

· Direct or Asynchronous Cancellation: Parent thread kills child thread directly
· Deferred Cancellation: Parent thread tells child thread to terminate itself at first convenient instant.

· Java: send notification: interrupt()

· Java: receive notification: interrupted() or isInterrupted()

· Java: returns from a system call via an InterruptException
Direct cancellations can cause problems when a thread is in the middle of using a resource.
Types of Thread Implementations
User Thread Package

· A package outside the OS creates and schedules threads.

· Many-to-one model: Many user threads associated with one process.
· If one thread blocks, then entire process blocks. Thus all threads block.
Kernel Thread Support

· The OS creates and schedules threads.
· One-to-one model: Each user thread is associated with one kernel thread.
· If one thread blocks, the kernel can schedule other threads.
· If multiprocessor configuration, kernel can allocate threads of same process on different processors.
· Most systems: Windows, Linux, Solaris 9
Many-to-Many Model: Combination of above

· N user threads share M kernel threads (where N > M)
· There may be a flexible and changing assignment of user threads to kernel threads.

· Bound: User-thread is assigned permanently to kernel thread

· Unbound: User threads share available kernel threads
· Example: IRIX, HP-UX
Questions for discussion: Assume an application with 4 user threads

· How many kernel threads should be allocated, at minimum, for a 3-processor system, assuming maximum parallel execution is desirable?
· Assuming 2 threads block for lengthy periods, what is the minimum number of kernel threads that should be allocated?
Processes Versus Threads

Advantages (Thread vs. Process):

· Much quicker to create a thread than a process.

· Much quicker to switch between threads than to switch between processes.

· Threads share data easily

Disadvantages (Thread vs. Process):

· No security between threads: One thread can stomp on another thread's data.

· For many-to-one model, If one thread blocks, all threads in task block.
Questions for Discussion
For the following code:

Allocate integer count = 1

Open file “file1”

Print “Hello”

Create Thread/Process
Parent:

Child Thread/Process:

Increment count

Increment count

Open “file3”

Open file “file 2”

Print count

Print count

For processes versus threads:

· How many times is “Hello” printed?
· What files are open in parent and in child?
· What is count in parent versus in child?
· What does parent and child print, and in what order?
Threads Mini-Lab

Introduction:

The purpose of this mini-lab is to learn what threads share with other threads. Also, what are the advantages and disadvantages of having multiple threads share an object?
Method:

Run the ParentLaugh program. Each ‘External’ thread generates a new object with a thread attached. ‘Internal’ threads generate a thread on the current (same) object. Three threads are created which laugh different laughs: “Ha”, “Ho”, “He”. The laughs can be spaced out with an n-second delay before every print, or no delay. In order to learn what threads share, we will observe: 1) which data variables are shared; 2) whether signals (such as CTL-C are shared; 3) the number of processes running. Use 2 commands:

$ ps –al

$ ps –al H
Results:

Below are the results for internal and external mode, with varying sleep times:
(Note laughs per line, interspersing of Ha/Ho/He, any other differences you see.)

	ParentLaugh Results
	One Object (Internal)
	Multiple Objects (External)

	Sleep 0

	
	

	Sleep 1

	
	

	CTL-C Effect on Threads
	
	

	Number of processes visible via $ ps –al
And $ ps –al H

	
	

Analysis:
Now explain what you think is going on in this code and O.S. between the differences you see (internal versus external), and how threads differ from working with processes:
Conclusion:

What did you learn from all this?
