PAGE
1
Virtual Memory

Virtual Memory
Operating Systems CS 370
Text:

Chapter 9
Operating Systems Concepts with Java, Seventh Ed., Silberschatz, Galvin, Gagne
Objectives:

During this class the student shall learn to be able to:

· Define Virtual Memory, Demand Paging, Pager.

· Describe advantages of Virtual Memory.

· Describe why page faults occur and what happens when a page fault occurs.

· Describe what swap space is and how it is used.

· Define dirty bit, lock bit. How are they used?

· Describe the 4 page replacement algorithms: Optimal, FIFO, LRU. Given an example reference string, how many page faults will occur for each and when will they occur?

· Describe the difference between Static and Dynamic Allocation algorithms, and Global and Local Scopes.

· Describe a process’s Working Set, given an example reference string, and why the Working Set is relevant.
· Define thrashing and the cause of thrashing.

· Describe the relationship between multiprogramming and thrashing.

· Describe the difference between Pure Demand Paging and Prepaging, and the advantage of each.
· Define whether an example code algorithm has good or poor locality.
Time Allocation:

Class time will be allocated as follows:

Introduction

1/2 hour

Page faults

1 hour

Page replacement

1.5 hour

OS Optimization, Fetch, Cleaning Algorithms
1/2 hour

Program Impact

1/2 hour

TOTAL:

4 hours

Virtual Memory

Introduction

There is no need to load entire program into memory because:

· Error routines are executed rarely if at all;

· Arrays / tables are allocated larger than they are used;

· Certain features may rarely be used

· (e.g. U.S. govt. balance budget routines)
Program need not be loaded all at the same time.

· Principle of Locality: Memory accesses tend to cluster

Advantage to loading partial programs in memory:

· Program size not constrained to physical size of memory;

· More programs can be run at same time increasing CPU utilization;

· Less I/O required to load or swap each program.

Real Memory: Physical memory.

Virtual Memory: User perceives a potentially much larger memory - that which is allocated on disk.

How many pages must an assembly instruction have to execute:

· Page with instruction,

· Page(s) with data,

· If indirection used, page with pointer.

This defines the minimum number of pages per process in memory
Demand Paging: Read in a page only as needed.

Demand Segmentation: Read in a segment only as needed.

Swapper: S/w which reads in a process as needed.

Pager: S/w which reads in pages of a process as needed.

Most systems today use paging or segmentation and paging.
Page Faults

Page Fault: Program references an instruction or data not in memory.

1. Paging H/W attempts to translate an address;

2. Page table indicates page is not in memory;

3. H/W generates a page-fault trap.

When a page-fault trap occurs, the O.S.:

1. Determine whether reference is a valid or invalid memory address.

2. If invalid terminate the process.

3. Find a free frame (e.g. from free-frame list).

4. Schedule disk operation to read the frame.

5. When read is complete modify internal table to indicate page is now in memory.

6. Restart the instruction that was interrupted by the trap.

Extended sequence to perform page swap: (Applied OS Concepts, p 306)
1. Trap to O.S.
2. Save user registers and process state.
3. Determine that interrupt was a page fault.
4. Check that page reference was legal and determine location of page on disk.
5. Issue a read from disk to a free frame.
· Wait in queue until read request is serviced.

· Wait for device seek and/or latency.

· Begin transfer of page to a free frame.

6. While waiting, allocate CPU to some other user.
7. Interrupt from disk when I/O completes.
8. Save registers and process state for other user.
9. Determine that interrupt was from disk.
10. Correct page table and other table to show desired page is in memory.
11. Wait for CPU to be allocated to process again.
12. Restore user registers, process state, and new page table and resume.
Swap Device or Swap Space: High-speed disk used to swap in pages.

· Generally faster than file system because:

· Swap space allocated in much larger blocks,

· File lookups and indirect allocation methods are not used.

· Two methods of use:

· At process startup copy entire file image into swap space and perform demand paging from swap space.

· Demand pages from file system, but write pages to swap space as they are replaced.

Page Replacement: When a process calls for a new page another page must leave memory.

· To find a free frame:

· If a free frame exists, use it.

· Use a page-replacement algorithm to select a victim frame.

· Write the victim page to disk, change page and frame tables accordingly.

· Read new frame in; change page and frame tables.

· Restart the user process.

Dirty Bit Enhancement: tracks which pages have been written to.

· If page is written into set modify or dirty bit.

· When new page brought in the old page does not have to be swapped out if dirty bit is clear (clean).

Page-switch speed dictated by disk read time:

· Disk read = 24 ms.

· Seek: move head to cylinder: 15 ms.

· Rotate: read track until data found: 8 ms.

· Transfer: read required data: 1 ms.

· Add queue time if other reads outstanding.

Memory access Time: 10-100 nanoseconds.

Conclusion: The fewer page faults the better!!!!!

· If we want < 10% degradation, we need < 1 memory access of 2,500,000 to page fault.

· Small improvements in demand-paging methods yield large gains in system performance.

Page Replacement Algorithms

Which page do we swap out to create room for a new page?

Which page replacement algorithm to use?

· The one with the lowest page-fault rate.

How do we divide the frames among the multiprogrammed processes?

· Static Paging Algorithm

· Dynamic Paging Algorithm

Static Paging Algorithm: Share frames equally among processes.

· Split m frames to n users: Each user gets m/n frames.

· E.g. Assume 100 frames and 5 processes. How many frames per process?

· Disadvantage: some applications require more frames than others. Compare:

· Database program of 127k

· Small student process of 10k

· Solution: Number of frames decided at initial load time according to program size, or priority.

Dynamic Paging Algorithm: Share frames according to needs rather than equally.

· Advantage: Some processes need more frames than others.

· Advantage: Sometimes a process needs more frames than other times.

· Locality of References: Within locality, active pages must be loaded

· Change of locality when (e.g.) change of function

· Some localities require more pages

· Change of localities requires more pages.

· How to implement?

Who gives up a frame when a new frame needs to be read in?

· Global Scope: Select a replacement from the set of all frames.

· May result in varied execution times for the same program: 0.5 to 10.3 seconds depending on other processes in memory.

· Advantage: Simple implementation, better throughput
· Disadvantage: Performance varies depending on degree of multiprogramming

· Local Scope: Select a replacement from the processes' own set of frames.

· May hinder process from getting the frames it needs.

· Advantage: Easy to analyze, consistent performance
Can mix allocation and scope policies:

· Static Paging, Local Scope: Replace from process's own frame set. Fixed number of frames per process.

· Dynamic Paging, Local Scope: Replace from process's own frame set. May periodically add or subtract frames from process's frame set.

· Dynamic Paging, Global Scope: Add or subtract frames as needed from any source.

Static Page Replacement Algorithms

FIFO Algorithm: The oldest page is removed.

· When a page is brought into memory, we insert it at tail of FIFO queue.

· When a page needs to be removed, it is removed from the front of the FIFO queue.

· Pointer points to the oldest page.

Advantages: Easy to understand and program.

Disadvantage: Performance is not always good.

Example: (From Operating Systems, William Stallings)
A 2
3
2
1
5
2
4
5
3
2
5
2

P1 2*
2
2
2
5*
5
5
5
3*
3
3
3

P2
3*
3
3
3
2*
2
2
2
2
5*
5

P3

1*
1
1
4*
4
4
4
4
2*

Optimal Algorithm: Replace page that will not be used for the longest period of time.

· Has the lowest page-fault rate of all algorithms.

· Replace page that has the maximal forward distance.

· Can't implement because it requires future knowledge of the reference string.

· Good to measure the effectiveness of other algorithms.

Example:

A 2
3
2
1
5
2
4
5
3
2
5
2

P1 2*
2
2
2
2
2
4*
4
4
2*
2
2

P2
3*
3
3
3
3
3
3
3
3
3
3

P3

1*
5*
5
5
5
5
5
5
5

LRU Algorithm: Replace page Least Recently Used.

· Replace the page that has not been used for the longest period of time.

· Most common implementation (in some form).

· Advantage: Works nearly as well as optimal method because of Principle of Locality.

· Well-behaved: if more resources added, performance will not degrade.

· Disadvantage: Difficult to implement.

· Impractical to have a clock value incremented and stored per instruction executed.

Example:

A 2
3
2
1
5
2
4
5
3
2
5
2

P1 2*
2
2
2
2
2
2
2
3*
3
3
3

P2
3*
3
3
5*
5
5
5
5
5
5
5

P3

1*
1
1
4*
4
4
2*
2
2

LRU Implementation: Additional-Reference-Bits Algorithm:
· Set a reference bit when page used.

· O.S. shifts reference bit for each page to the right periodically.

· When fixed-interval timer interrupts, copy and clear reference bit values for each page.

· If multiple bits used, can determine if used recently and approx. when used.

· 00000000: page has not been used for 8 time periods.

· 11111111: page has been used at least once each of 8 last periods.

· Which is most recent? 11000100 or 01110111

Clock or Second-Chance Algorithm: Modified LRU-FIFO algorithm.

· Reference or Used bit: ‘ : Bit maintained per page.

· Approximates LRU performance.

· H/w sets bit every time page is used.

· To find a replacement page scan pages in FIFO order:

· If page has Reference bit set to 1, set the bit to 0.

· Select first page that has Reference bit set to zero.

· If all bits are set to 1, one cycle will clear the Reference bits and first page will be selected.

Example:

A 2
3
2
1
5
2
4
5
3
2
5
2

P1 2’
2’
2’
->2’
5’
5’
->5’
->5’
3’
3’
->3’
->3’

P2->
3’
3’
3’
->3
2’
2’
2’
->2
->2’
2
2’

P3
->
->
1’
1
->1
4’
4’
4
4
5’
5’

Enhanced Clock Algorithm: Use a Modify bit to indicate write necessary.

· Procedure: where u=User bit and m=Modify bit:

1. Scan selecting page with (u=0; m=0)

2. Scan selecting page with (u=0; m=1); set all Use bits to 0.

3. Go to 1.

· Algorithm used by Macintosh

· Advantage: Less time taken to write modified pages.

Exercise: Try the algorithms above with the following reference string: (Answers are in text and will be discussed in class.)

7 0 1 2 0 3 0 4 2 3 0 3 2 1 2 0 1 7 0 1

Dynamic Page Replacement Algorithms

How many frames does a process need?

· Working Set Strategy can determine need.

Working Set Model: Examine the most recent delta (e.g. 10k) page references.

· Procedure includes:

· Set reference bits at each page access.

· At timed interrupt determine working set and clear reference bits.

· Periodically change # pages allocated to each process, based upon working set.

· Process may execute only if working set is in memory.

· If total demand > total # of available frames, thrashing will occur.

· If total demand < total # of available frames, frames may be given up.

· If the sum of working set > total number of available frames, O.S. must suspend a process.

Example: Working set is 10 references

 -------------1--------------- ---------------2---------------- --------------3----------------

 2, 3, 2, 1, 5, 2, 4, 5, 3, 2, 5, 2, 4, 7, 9, 8, 7, 9, 7, 8
 7, 9, 7, 9, 5, 6, 6, 5, 9, 7

Working set:

1, 2, 3, 4, 5

2, 4, 5, 7, 8, 9

5, 6, 7, 9

Example: (Assumes delta = 5 (calculated at *) and A shows already-loaded pages.

A 2
3
2
1
5 *
2
4
5
3
2 *
5
2

1

1
1
1

2

2
2
2

2

3

3
3
3

3

5
5
5

5

4

4

How to implement working set:

Use Clock Algorithm with a global scope.

Page-Fault Frequency: Measure # of page faults or interval between page faults:

· Measure # of page faults:

· If # page faults < minimum threshold -> reduce # frames for process.

· If # page faults > maximum threshold -> increase # frames for process.

· Measure interval between page faults:

· If interval size < minimum threshold -> increase # frames for process.

· If interval size > maximum threshold -> decrease # frames for each process.

To optimize multiprogramming with Clock Algorithm:

· Increase degree of multiprogramming when:

· Pointer moves slowly or

· Scan requires few steps.

· Decrease degree of multiprogramming when:

· Many lengthy scans.

Optimizing the Operating System

Tradeoff between #ProcessesInMemory & #PagesPerProcess

· Degree of Multiprogramming: # Processes in Memory

· Increased CPU Utilization: More processes in memory

· Fewer page faults: More pages per process

Thrashing: Process that spends more time paging than executing.

· A process may page-fault continuously because it does not have enough frames.

· Replaces a page with another, which is in active use.

Early O.S. raised degree of multiprogramming when CPU utilization was low.
· CPU utilization may be low due to process stealing active frames from other processes.

· Total CPU utilization degraded.

· O.S. saw low CPU utilization and increased degree of multiprogramming.

· Vicious cycle continued until CPU utilization was very low.

· Solution: lower degree of multiprogramming.

Other Optimizations

Lock Bit: Some pages may be locked in memory. Reasons:

· I/O buffer spaces used by I/O interrupts.
· Page read in for a low priority process in Ready queue.

· O.S. and real time routines that need immediate processing (e.g. page replacement algorithm).

Fetch Policy

Demand Paging: Never bring a page into memory until it is required.

· Most common implementation

Prepaging: Load in pages expected to be needed.

· If process is suspended, remember working set.

· Before process is resumed reload working set (= all active pages).

· Is cost of prepaging < cost of servicing corresponding page faults?

Cleaning Policy

When should a modified page be written out to disk?

· Demand Cleaning: Page written only when it is selected for replacement.

· Disadvantage: Lengthens time for page fault, since write and read is required.

· Precleaning: Pages written out periodically in batches.

· Disadvantage: May cause excess writes to disk.

· Solution: Page Buffering: Write not-recently-used pages out to disk before putting on free list.

Page Buffering Algorithm
· When page fault occurs the new page is selected from free frame pool.

· Victim page is queued for writing if necessary, then added to free frame pool.

· Advantage: Do not need to wait for victim page to be written before reading new page in.

· Advantage: Writes occur in clusters more efficiently.

· When a page fault occurs, we can first check free-frame pool for page.

· Advantage: When page is still being used no I/O is necessary - page removed from free frame pool.

· Used by VAX/VMS

Program Impact

Compare the following 2 code examples:

int array[128][128];

for (j=0; j<128; j++)

for (i=0; i<128; i++)

array[j][i] = 0;

and:

int array[128][128];

for (j=0; j<128; j++)

for (i=0; i<128; i++)

array[i][j] = 0;

Which is more efficient from a page fault point of view?

Assume page size is 128 words large each, and < 128 frames are allocated to program.

How many page faults will occur with each?

Which structures below have good locality, and which have poor?

· stack

· hash table.

· indirection

· sequential search

· binary search.

Of course locality of reference is just one measure of the efficiency of a data structure.

How to optimize compiler and loader:

· Reentrant code is efficient;

· Separate code from data so code pages need never be written.

· Routines that call each other can be packed into the same page.

